In the non-stationary threshold exceedance model, the GP parameters are allowed to be functions of multiple covariates:
\[ ϕ = X₂ × β₂ \\ ξ = X₃ × β₃ \]
where $(X₂,β₂)$ and $(X₃,β₃)$ are respectively the design matrix and the corresponding coefficient parameter vector of $ϕ$ and $ξ$ .
An intercept is included in all parameter functions by default.
The non-stationary ThresholdExceedance
model is illustrated using the daily rainfall accumulations at a location in south-west England from 1914 to 1962, studied by Coles (2001) in Chapter 6.
Loading the daily rainfall accumulations:
data = Extremes.dataset("rain")
first(data,5)
1 1914-01-01 0.0 2 1914-01-02 2.3 3 1914-01-03 1.3 4 1914-01-04 6.9 5 1914-01-05 4.6
Extract the exceedances over the threshold of 30 mm :
threshold = 30.0
df = filter(row -> row.Rainfall > threshold, data)
df[!,:Exceedance] = df[:,:Rainfall] .- threshold
df[!,:Year] = year.(df[:,:Date])
plot(df, x=:Date, y=:Exceedance, Geom.point)
Date
Jan 1, 1910
1920
1930
1940
1950
1960
1970
Jan 1, 1910
1912
1915
1918
1920
1922
1925
1928
1930
1932
1935
1938
1940
1942
1945
1948
1950
1952
1955
1958
1960
1962
1965
1968
1970
Jan 1, 1910
Apr
Jul
Oct
Jan 1911
Apr
Jul
Oct
Jan 1912
Apr
Jul
Oct
Jan 1913
Apr
Jul
Oct
Jan 1914
Apr
Jul
Oct
Jan 1915
Apr
Jul
Oct
Jan 1916
Apr
Jul
Oct
Jan 1917
Apr
Jul
Oct
Jan 1918
Apr
Jul
Oct
Jan 1919
Apr
Jul
Oct
Jan 1920
Apr
Jul
Oct
Jan 1921
Apr
Jul
Oct
Jan 1922
Apr
Jul
Oct
Jan 1923
Apr
Jul
Oct
Jan 1924
Apr
Jul
Oct
Jan 1925
Apr
Jul
Oct
Jan 1926
Apr
Jul
Oct
Jan 1927
Apr
Jul
Oct
Jan 1928
Apr
Jul
Oct
Jan 1929
Apr
Jul
Oct
Jan 1930
Apr
Jul
Oct
Jan 1931
Apr
Jul
Oct
Jan 1932
Apr
Jul
Oct
Jan 1933
Apr
Jul
Oct
Jan 1934
Apr
Jul
Oct
Jan 1935
Apr
Jul
Oct
Jan 1936
Apr
Jul
Oct
Jan 1937
Apr
Jul
Oct
Jan 1938
Apr
Jul
Oct
Jan 1939
Apr
Jul
Oct
Jan 1940
Apr
Jul
Oct
Jan 1941
Apr
Jul
Oct
Jan 1942
Apr
Jul
Oct
Jan 1943
Apr
Jul
Oct
Jan 1944
Apr
Jul
Oct
Jan 1945
Apr
Jul
Oct
Jan 1946
Apr
Jul
Oct
Jan 1947
Apr
Jul
Oct
Jan 1948
Apr
Jul
Oct
Jan 1949
Apr
Jul
Oct
Jan 1950
Apr
Jul
Oct
Jan 1951
Apr
Jul
Oct
Jan 1952
Apr
Jul
Oct
Jan 1953
Apr
Jul
Oct
Jan 1954
Apr
Jul
Oct
Jan 1955
Apr
Jul
Oct
Jan 1956
Apr
Jul
Oct
Jan 1957
Apr
Jul
Oct
Jan 1958
Apr
Jul
Oct
Jan 1959
Apr
Jul
Oct
Jan 1960
Apr
Jul
Oct
Jan 1961
Apr
Jul
Oct
Jan 1962
Apr
Jul
Oct
Jan 1963
Apr
Jul
Oct
Jan 1964
Apr
Jul
Oct
Jan 1965
Apr
Jul
Oct
Jan 1966
Apr
Jul
Oct
Jan 1967
Apr
Jul
Oct
Jan 1968
Apr
Jul
Oct
Jan 1969
Apr
Jul
Oct
Jan 1970
Jan 1, 1900
2000
1961-09-2815.700000000000003
1961-01-149.399999999999999
1960-10-059.399999999999999
1960-08-097.600000000000001
1959-12-033.5
1959-10-2621.299999999999997
1959-04-011.1999999999999993
1959-02-251.6999999999999993
1959-01-2211.899999999999999
1958-11-2418.799999999999997
1958-11-135.600000000000001
1958-10-161.1999999999999993
1958-04-240.5
1958-01-041.0
1957-10-0217.0
1957-09-018.100000000000001
1957-08-238.399999999999999
1957-02-086.299999999999997
1956-12-096.600000000000001
1956-08-071.0
1956-03-083.5
1956-02-074.299999999999997
1956-01-315.600000000000001
1955-12-274.0
1955-09-279.399999999999999
1955-07-288.100000000000001
1955-07-184.799999999999997
1955-01-1210.100000000000001
1954-12-183.0
1954-11-023.0
1954-11-0112.399999999999999
1954-10-175.299999999999997
1953-11-2525.4
1953-11-217.600000000000001
1953-07-2412.899999999999999
1952-10-2517.799999999999997
1952-10-236.799999999999997
1952-06-200.5
1952-05-175.299999999999997
1952-05-133.5
1951-08-1529.4
1951-07-075.299999999999997
1950-11-0321.6
1950-06-083.799999999999997
1950-05-211.8000000000000007
1950-03-0514.5
1950-02-140.1999999999999993
1950-02-029.399999999999999
1949-11-190.5
1949-08-1915.200000000000003
1949-08-075.600000000000001
1948-11-161.8000000000000007
1948-10-222.0
1948-10-171.8000000000000007
1948-10-164.299999999999997
1948-08-248.100000000000001
1948-07-1614.200000000000003
1947-12-0225.9
1946-08-155.600000000000001
1946-07-193.0
1946-03-110.5
1945-11-2611.899999999999999
1945-11-2255.3
1945-11-1821.299999999999997
1945-09-061.8000000000000007
1945-09-0225.9
1945-08-090.5
1945-08-080.5
1944-10-196.299999999999997
1943-12-1617.0
1943-11-169.899999999999999
1942-05-3110.899999999999999
1942-02-073.0
1942-01-297.100000000000001
1942-01-104.299999999999997
1941-12-0942.400000000000006
1941-05-160.5
1940-08-228.100000000000001
1939-11-033.0
1939-11-022.0
1939-07-1217.0
1939-02-153.299999999999997
1938-11-041.0
1938-04-038.399999999999999
1937-12-086.799999999999997
1937-11-246.100000000000001
1937-11-110.1999999999999993
1937-08-211.1999999999999993
1937-08-0237.3
1937-07-054.0
1936-02-252.5
1936-01-217.299999999999997
1935-12-131.8000000000000007
1935-06-2929.200000000000003
1934-11-1324.9
1934-10-0453.3
1933-12-0712.700000000000003
1933-08-0410.899999999999999
1932-10-090.1999999999999993
1932-07-140.5
1931-10-073.5
1931-06-3023.299999999999997
1931-01-085.100000000000001
1930-11-0229.4
1930-09-0213.399999999999999
1930-08-030.6999999999999993
1929-08-1918.5
1928-12-034.299999999999997
1928-11-2317.5
1928-11-1817.799999999999997
1928-11-175.600000000000001
1928-10-0456.599999999999994
1928-08-0215.700000000000003
1928-07-270.5
1928-02-016.600000000000001
1927-12-103.799999999999997
1927-01-274.0
1926-12-202.299999999999997
1926-07-1346.7
1926-01-277.799999999999997
1925-11-085.299999999999997
1925-11-074.799999999999997
1925-10-311.8000000000000007
1924-12-313.5
1924-10-313.5
1924-10-211.8000000000000007
1924-09-1815.700000000000003
1924-02-110.5
1923-10-072.799999999999997
1923-04-134.299999999999997
1922-10-250.5
1922-02-0810.600000000000001
1922-02-065.299999999999997
1922-02-0518.5
1921-12-182.5
1921-09-110.5
1920-03-123.0
1918-11-012.299999999999997
1918-01-181.8000000000000007
1918-01-150.5
1917-08-279.100000000000001
1917-06-283.0
1916-11-041.8000000000000007
1916-08-292.0
1916-02-038.100000000000001
1915-12-145.600000000000001
1915-02-1613.200000000000003
1915-02-130.5
1914-12-3014.5
1914-12-171.8000000000000007
1914-03-082.5
1914-02-071.8000000000000007
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0
10
20
30
40
50
60
0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5
60.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0
15.2
15.4
15.6
15.8
16.0
16.2
16.4
16.6
16.8
17.0
17.2
17.4
17.6
17.8
18.0
18.2
18.4
18.6
18.8
19.0
19.2
19.4
19.6
19.8
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
22.2
22.4
22.6
22.8
23.0
23.2
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4
36.6
36.8
37.0
37.2
37.4
37.6
37.8
38.0
38.2
38.4
38.6
38.8
39.0
39.2
39.4
39.6
39.8
40.0
40.2
40.4
40.6
40.8
41.0
41.2
41.4
41.6
41.8
42.0
42.2
42.4
42.6
42.8
43.0
43.2
43.4
43.6
43.8
44.0
44.2
44.4
44.6
44.8
45.0
45.2
45.4
45.6
45.8
46.0
46.2
46.4
46.6
46.8
47.0
47.2
47.4
47.6
47.8
48.0
48.2
48.4
48.6
48.8
49.0
49.2
49.4
49.6
49.8
50.0
50.2
50.4
50.6
50.8
51.0
51.2
51.4
51.6
51.8
52.0
52.2
52.4
52.6
52.8
53.0
53.2
53.4
53.6
53.8
54.0
54.2
54.4
54.6
54.8
55.0
55.2
55.4
55.6
55.8
56.0
56.2
56.4
56.6
56.8
57.0
57.2
57.4
57.6
57.8
58.0
58.2
58.4
58.6
58.8
59.0
59.2
59.4
59.6
59.8
60.0
0
100
Exceedance
Non-stationary parameter estimation can be performed either by maximum likelihood or by the Bayesian approach. Probability weighted moment estimation cannot be used in the non-stationary case.
The GP parameter estimation with maximum likelihood is performed with the gpfit
function. The parameter estimate vector $\mathbf{θ̂} = (\mathbf{β̂₂},\, \mathbf{β̂₃})^\top$ is contained in the field θ̂
of the returned structure.
Several non-stationary model can be fitted.
julia> fm₀ = gpfit(df, :Exceedance)
MaximumLikelihoodAbstractExtremeValueModel
model :
ThresholdExceedance
data : Vector{Float64}[152]
logscale : ϕ ~ 1
shape : ξ ~ 1
θ̂ : [2.006896498380506, 0.1844926991237574]
julia> fm₁ = gpfit(df, :Exceedance, logscalecovid = [:Year])
MaximumLikelihoodAbstractExtremeValueModel
model :
ThresholdExceedance
data : Vector{Float64}[152]
logscale : ϕ ~ 1 + Year
shape : ξ ~ 1
θ̂ : [-11.205671606002209, 0.006804339309339082, 0.1976859276224044]
Confidence intervals for the parameters are obtained with the cint
function:
julia> cint(fm₁)
3-element Vector{Vector{Float64}}:
[-38.83131900584391, 16.419975793839495]
[-0.007421606369680473, 0.021030284988358634]
[-0.0018240741601000532, 0.39719592940490883]
In particular, the 95% confidence interval for the rise in the log-scale parameter per year is as follows:
julia> cint(fm₁)[2]
2-element Vector{Float64}:
-0.007421606369680473
0.021030284988358634
Several diagnostic plots for assessing the accuracy of the GP model fitted to the rainfall data can be shown with the diagnosticplots
function:
set_default_plot_size(21cm ,16cm)
diagnosticplots(fm₁)
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
Data
0
2
4
6
8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95
6.00
6.05
6.10
6.15
6.20
6.25
6.30
6.35
6.40
6.45
6.50
6.55
6.60
6.65
6.70
6.75
6.80
6.85
6.90
6.95
0
10
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Density
Residual Density Plot
Model
0
1
2
3
4
5
6
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60
3.62
3.64
3.66
3.68
3.70
3.72
3.74
3.76
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00
4.02
4.04
4.06
4.08
4.10
4.12
4.14
4.16
4.18
4.20
4.22
4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38
4.40
4.42
4.44
4.46
4.48
4.50
4.52
4.54
4.56
4.58
4.60
4.62
4.64
4.66
4.68
4.70
4.72
4.74
4.76
4.78
4.80
4.82
4.84
4.86
4.88
4.90
4.92
4.94
4.96
4.98
5.00
5.02
5.04
5.06
5.08
5.10
5.12
5.14
5.16
5.18
5.20
5.22
5.24
5.26
5.28
5.30
5.32
5.34
5.36
5.38
5.40
5.42
5.44
5.46
5.48
5.50
5.52
5.54
5.56
5.58
5.60
5.62
5.64
5.66
5.68
5.70
5.72
5.74
5.76
5.78
5.80
5.82
5.84
5.86
5.88
5.90
5.92
5.94
5.96
5.98
6.00
0
10
5.0304379213924394.933188168790678
4.3372907408324934.621361391856679
3.93182563272432354.507081990053188
3.6441435602725444.3894772778589655
3.42100000895833523.831051415822922
3.2386784521643813.5663068795344564
3.0845277723371233.1020322596018963
2.95099637971259863.008359903410684
2.83321334405621572.7834516616833533
2.727852828398392.677012116865418
2.63254264859406552.604044259191286
2.54553127160443452.582681213416634
2.46548856393089852.576457709874402
2.3913805917771772.4568777269124946
2.32238772029022572.2571749469274405
2.25784919915265462.228977520040807
2.1972245773362192.1930914696615726
2.14006616349627082.1717642922265283
2.0859989422259952.116249900071746
2.03470564783844442.0870191004414025
1.98591548366901272.0624633491050854
1.93939546803411921.951661248521431
1.89494370546328561.9331628251463757
1.85238409104448981.9154860127627287
1.8115620965242351.9079957827398926
1.77234138337095361.8724890090733364
1.73460105538810621.8702653465791534
1.69823341121723151.8487420177635987
1.66314209140596141.77680767042079
1.62924053973028031.7282491297518188
1.59645071690728951.6503605808151727
1.56470201859270871.6458009826074187
1.53393035992595531.5777819502982873
1.50407739677627421.571470569560064
1.4750898599030221.5616387203016717
1.44691898293632511.548819149242128
1.4195200087482111.4129461234941354
1.39285176166604961.3950940586053122
1.36687627526278921.363401172539862
1.34155846727849931.356099916212751
1.31686585468812761.3395854161645866
1.2927683031090671.2849412745909754
1.26923780569887311.2732102493280892
1.24624828747417451.2536252349357335
1.22377543162211591.1726108788432468
1.20179652490334021.1549858578065524
1.18029031968237691.1096437706531868
1.15923691048454461.072544365088827
1.1386176232818091.0502541169412336
1.11841491596428951.043121213338547
1.09861228866810961.04011279062199
1.0791942028110081.008567176697147
1.06014600784031381.0023627053410267
1.04145387482816120.9969614869893617
1.02310473615996430.948793354918878
1.0050862306572860.929646533303652
0.98738665355788520.9274970654658118
0.96999491084601620.9083921201612516
0.95290047748671610.8971406477410884
0.93609335917033460.8910199969772384
0.91956405721912420.873022919196923
0.9033035363473440.8675905449511441
0.88730319500090280.8657138820922912
0.87155483803276370.830993259920531
0.85605065149679830.8303699771953186
0.84078317936600990.7879138480630313
0.82574530200146950.7831346252252847
0.81093021621632880.7720567913802876
0.79633141679517620.7656987860731047
0.78194267934307640.7556464561090074
0.767758044351120.7472774942935748
0.75377180237638020.7414435753567487
0.73997848024404440.7110740918476818
0.72637282818826590.6885951203947257
0.71294980785612490.6831182721117486
0.69970458110610430.6759586931405593
0.68663249953875160.6701900547640602
0.67372909470284370.6409091205532756
0.6609900689254140.6327660471369407
0.64841128671855390.6283615716281516
0.63598876671999670.6243529369868255
0.62371867412818240.6174779138941003
0.61159731359583750.6164076522483242
0.59962112254912180.5979969805087463
0.5877866649021190.5621029638710296
0.57609062513892770.5577565809390205
0.56452980273785180.5464879358900719
0.5531011069142290.5354328857068853
0.54180155166029560.5269864983456022
0.53062825106217040.525723226120812
0.51957841487558540.5048806623484644
0.50864934434339510.5048806623484644
0.49783842823917950.49919964257275484
0.48714313912243160.4824811051183908
0.476561029791894630.4689640051680159
0.466089729924599240.46128896443684786
0.45572694288905260.45609461184918504
0.445470442721863540.44727429903730453
0.435318071257845550.43295577610519276
0.42526773540434410.420832475218871
0.415317404551176050.4105301524271518
0.405465108108164330.4099786094174644
0.39570893316279970.40201509348699
0.386047022251062740.3950921425383683
0.37647757123491210.3904766033444264
0.366998827280368370.3874068453865685
0.35760908693052930.3773832709598199
0.34830669426821580.3729670717656384
0.33909003916329170.35808044000234324
0.32995755560001920.35808044000234324
0.32090772008010140.3509771135544947
0.31193905009734090.33795941991092426
0.30305010268009490.33298090397928626
0.294239472997939950.31062902149868094
0.28550579302918540.28414672474201785
0.27684773028607080.28414672474201785
0.26826398659467930.28041055334812415
0.25975329692677070.27672217613392175
0.251314428280906050.2667931450760321
0.242946178610389470.26593806800811287
0.23464737579569440.26418095662519875
0.22641687665917890.25133226027711447
0.218253566020017970.24722069559685753
0.210156355787398580.2313245397313478
0.202124184090134330.22675357553828582
0.194156014440957480.22675357553828582
0.18625083493384420.22375545161441568
0.17840765747281830.19925683955327364
0.170625517030763340.16393913116857198
0.162903470936853030.1424145783532699
0.15524059819128390.14146220879447632
0.147635998806064620.13606572184766488
0.14008879317068170.12056613163553989
0.13259812144152410.11895551036988877
0.125163142954006020.10092570900559703
0.117783035656383440.08000201874213682
0.110456995564310540.07839795282290105
0.103184236235230760.07682580529956196
0.09596398826174370.07630874064688528
0.088795498783131170.07528495067338918
0.081678031014267180.0732780967842956
0.074610863791174720.07132436283798894
0.067593291132528180.06711555730471691
0.060624621816434840.06532506952130177
0.053704178971861060.06532506952130177
0.046831299684099020.06488491330159672
0.040005334613699160.06358204821048588
0.03322564762832040.0623051833751499
0.0264916154469763240.0598274143294824
0.0198026272961797120.028650536996048477
0.0131580845775111350.02769481036771507
0.0065574005461590750.02535611689830137
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0
1
2
3
4
5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60
3.62
3.64
3.66
3.68
3.70
3.72
3.74
3.76
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00
4.02
4.04
4.06
4.08
4.10
4.12
4.14
4.16
4.18
4.20
4.22
4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38
4.40
4.42
4.44
4.46
4.48
4.50
4.52
4.54
4.56
4.58
4.60
4.62
4.64
4.66
4.68
4.70
4.72
4.74
4.76
4.78
4.80
4.82
4.84
4.86
4.88
4.90
4.92
4.94
4.96
4.98
5.00
0
5
Empirical
Residual Quantile Plot
Model
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
0.9927964993432420.9934640522875817
0.9901606083287520.9869281045751634
0.98896939933767660.9803921568627451
0.98759278694935490.9738562091503268
0.97831319820801740.9673202614379085
0.97173997111285910.9607843137254902
0.95504225631516710.954248366013072
0.95062741179380480.9477124183006536
0.93817525942387580.9411764705882353
0.93123168080181680.934640522875817
0.92602619679451770.9281045751633987
0.92442889013056060.9215686274509803
0.92395710650983950.9150326797385621
0.9142978809156730.9084967320261438
0.89535430278856550.9019607843137255
0.8923615679715660.8954248366013072
0.88842870436181140.8888888888888888
0.88602364817370380.8823529411764706
0.87951739581366640.8758169934640523
0.87594361518031040.869281045751634
0.87285960734418590.8627450980392157
0.85796208479301840.8562091503267973
0.85531015466097250.8496732026143791
0.85272976002608790.8431372549019608
0.85162253052797080.8366013071895425
0.84625947636254160.8300653594771242
0.84591722894594610.8235294117647058
0.84256490765663480.8169934640522876
0.83082264397759020.8104575163398693
0.82240491613576570.803921568627451
0.80801932840832780.7973856209150327
0.80714197501273950.7908496732026143
0.79356753174274080.7843137254901961
0.79226053770886520.7777777777777778
0.79020800104913710.7712418300653595
0.78750124495405140.7647058823529411
0.75657493461039320.7581699346405228
0.75219027336626450.7516339869281046
0.74421068779200720.7450980392156863
0.74233626998222960.738562091503268
0.73804575193201260.7320261437908496
0.72333316947229780.7254901960784313
0.72006847221067050.7189542483660131
0.71453196994156710.7124183006535948
0.69044233229778220.7058823529411765
0.68493800746044650.6993464052287581
0.6703236194384790.6928104575163399
0.65786311213604990.6862745098039216
0.65015116470153940.6797385620915033
0.64764680562602880.673202614379085
0.64658518216645120.6666666666666666
0.63525878494096220.6601307189542484
0.63298872353650270.6535947712418301
0.63100105240411960.6470588235294118
0.6127920357326170.6405228758169934
0.60530680338144280.6339869281045751
0.60445751061274390.6274509803921569
0.59682804478452540.6209150326797386
0.59226615076367530.6143790849673203
0.58976290132490370.6078431372549019
0.58231299516242130.6013071895424836
0.58003778874340780.5947712418300654
0.57924892127180220.5882352941176471
0.56438360893360040.5816993464052288
0.5641120121302240.5751633986928104
0.54520742725872150.5686274509803921
0.54302866997242460.5620915032679739
0.53793827428463040.5555555555555556
0.53499112431071440.5490196078431373
0.53029312831380160.5424836601307189
0.52634567443461020.5359477124183006
0.52357433747771810.5294117647058824
0.50888359006660620.5228758169934641
0.49771878173513450.5163398692810458
0.4949603167554240.5098039215686274
0.49133147025417970.5032679738562091
0.48838866562539680.49673202614379086
0.47318673049961230.49019607843137253
0.46887933746228540.48366013071895425
0.466534870227772850.477124183006536
0.46439211152961440.47058823529411764
0.46069710786394460.46405228758169936
0.46011960367787060.45751633986928103
0.45008798182637610.45098039215686275
0.429990905986424370.4444444444444444
0.427508036346666950.43790849673202614
0.421020342507094750.43137254901960786
0.41458418285349430.42483660130718953
0.409618592967626870.41830065359477125
0.40887230925359330.4117647058823529
0.39642239933732360.40522875816993464
0.39642239933732360.39869281045751637
0.39298370465389430.39215686274509803
0.38274997182966160.38562091503267976
0.37434989707865380.3790849673202614
0.369529532470362850.37254901960784315
0.366246126363946160.3660130718954248
0.36063149394612290.35947712418300654
0.351410825689836840.35294117647058826
0.34349992777159350.3464052287581699
0.33670149240775010.33986928104575165
0.33633555384640030.3333333333333333
0.33102935148563390.32679738562091504
0.326382032480229570.3202614379084967
0.32326573618781530.3137254901960784
0.32118513395736010.30718954248366015
0.31434676744303420.3006535947712418
0.31131209025250730.29411764705882354
0.30098315617161760.2875816993464052
0.30098315617161760.28104575163398693
0.29600013427418880.27450980392156865
0.28677576998617360.2679738562091503
0.283216118255137650.26143790849673204
0.267014252608975040.2549019607843137
0.247343796683107630.24836601307189543
0.247343796683107630.24183006535947713
0.244526484403296940.23529411764705882
0.24173486800006160.22875816993464052
0.23416852890733720.2222222222222222
0.233513403927258060.21568627450980393
0.232165417670268380.20915032679738563
0.222236091428948350.20261437908496732
0.219031681758278780.19607843137254902
0.206518092161629830.1895424836601307
0.202882812736554650.1830065359477124
0.202882812736554650.17647058823529413
0.200489370501916950.16993464052287582
0.180660572466435550.16339869281045752
0.151206314612404860.1568627450980392
0.132738365954871370.1503267973856209
0.131912018943686570.1437908496732026
0.12721473045678850.13725490196078433
0.113581534895862760.13071895424836602
0.112152700118740080.12418300653594772
0.095999810535715520.11764705882352941
0.076885517145348860.1111111111111111
0.075403592429135410.10457516339869281
0.073948847239495980.09803921568627451
0.073469895107895130.0915032679738562
0.072520837141244980.08496732026143791
0.070657653032396460.0784313725490196
0.068840190500379150.0718954248366013
0.064912861056254420.06535947712418301
0.063237099189658250.058823529411764705
0.063237099189658250.05228758169934641
0.062824686416112270.0457516339869281
0.06160287766263720.0392156862745098
0.06040390607611410.032679738562091505
0.05807291732583460.026143790849673203
0.0282440020939022960.0196078431372549
0.0273148250615715130.013071895424836602
0.0250373504757285570.006535947712418301
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Empirical
Residual Probability Plot
The diagnostic plots consist in the residual probability plot (upper left panel), the residual quantile plot (upper right panel) and the residual density plot (lower left panel) of the standardized data (see Chapter 6 of Coles, 2001). These plots can be displayed separately using respectively the probplot
, qqplot
, histplot
and returnlevelplot
functions.
Since the model parameters vary in time, the quantiles also vary in time. Therefore, a T -year return level can be estimated for each year. This set of return levels are referred to as effective return levels as proposed by Katz et al. (2002).
The 100-year effective return levels for the fm₁
model can be computed using the returnlevel
function:
julia> nobs = size(data,1)
17531
julia> nobsperblock = 365
365
julia> r = returnlevel(fm₁, threshold, nobs, nobsperblock, 100)
ReturnLevel
returnperiod : 100
value : Vector{Float64}[152]
The effective return levels can be accessed as follows:
julia> r.value
152-element Vector{Float64}:
96.07236738849316
96.07236738849316
96.07236738849316
96.07236738849316
96.523479213636
96.523479213636
96.523479213636
96.97767102345072
96.97767102345072
96.97767102345072
⋮
119.74262810056645
119.74262810056645
119.74262810056645
119.74262810056645
119.74262810056645
120.35534961117199
120.35534961117199
120.97225450327086
120.97225450327086
The corresponding confidence interval can be computed with the cint
function:
julia> c = cint(r)
152-element Vector{Vector{Real}}:
[55.894149909256036, 136.25058486773028]
[55.894149909256036, 136.25058486773028]
[55.894149909256036, 136.25058486773028]
[55.894149909256036, 136.25058486773028]
[56.49568315762775, 136.55127526964424]
[56.49568315762775, 136.55127526964424]
[56.49568315762775, 136.55127526964424]
[57.086045158813825, 136.86929688808763]
[57.086045158813825, 136.86929688808763]
[57.086045158813825, 136.86929688808763]
⋮
[61.3830404173303, 178.1022157838026]
[61.3830404173303, 178.1022157838026]
[61.3830404173303, 178.1022157838026]
[61.3830404173303, 178.1022157838026]
[61.3830404173303, 178.1022157838026]
[60.873037890298875, 179.83766133204512]
[60.873037890298875, 179.83766133204512]
[60.335753531546054, 181.60875547499566]
[60.335753531546054, 181.60875547499566]
The effective return levels along with their confidence intervals can be plotted as follows:
rmin = [c[i][1] for i in eachindex(c)]
rmax = [c[i][2] for i in eachindex(c)]
df_plot = DataFrame(Year = year.(df[:,:Date]), r = r.value, rmin = rmin, rmax = rmax)
set_default_plot_size(12cm, 8cm)
plot(df_plot, x=:Year, y=:r, ymin=:rmin, ymax=rmax, Geom.line, Geom.ribbon,
Coord.cartesian(xmin=1910, xmax=1965), Guide.xticks(ticks=1910:5:1965),
Guide.ylabel("100-year Effective Return Level"))
Year
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0
50
100
150
200
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
0
200
100-year Effective Return Level
Most functions described in the previous sections also work in the Bayesian context. To reproduce exactly the results, the seed should be fixed as follows:
import Random
Random.seed!(4786)
The Bayesian GP parameter estimation is performed with the gpfitbayes
function:
julia> fm = gpfitbayes(df, :Exceedance, logscalecovid = [:Year])
Progress: 12%|█████ | ETA: 0:00:01
Progress: 24%|█████████▉ | ETA: 0:00:01
Progress: 38%|███████████████▌ | ETA: 0:00:01
Progress: 52%|█████████████████████▌ | ETA: 0:00:00
Progress: 67%|███████████████████████████▌ | ETA: 0:00:00
Progress: 82%|█████████████████████████████████▋ | ETA: 0:00:00
Progress: 97%|███████████████████████████████████████▋ | ETA: 0:00:00
Progress: 100%|█████████████████████████████████████████| Time: 0:00:00
BayesianAbstractExtremeValueModel
model :
ThresholdExceedance
data : Vector{Float64}[152]
logscale : ϕ ~ 1 + Year
shape : ξ ~ 1
sim :
MambaLite.Chains
Iterations : 2001:5000
Thinning interval : 1
Chains : 1
Samples per chain : 3000
Value : Array{Float64, 3}[3000,3,1]
Currently, only the improper uniform prior is implemented, i.e. \[ f_{(β₂,β₃)}(β₂,β₃) ∝ 1. \]
The model fit can be assessed with the diagnostic plots using the function diagnosticplots
:
set_default_plot_size(21cm ,16cm)
diagnosticplots(fm)
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
Data
0
2
4
6
8
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.10
2.15
2.20
2.25
2.30
2.35
2.40
2.45
2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
2.90
2.95
3.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40
3.45
3.50
3.55
3.60
3.65
3.70
3.75
3.80
3.85
3.90
3.95
4.00
4.05
4.10
4.15
4.20
4.25
4.30
4.35
4.40
4.45
4.50
4.55
4.60
4.65
4.70
4.75
4.80
4.85
4.90
4.95
5.00
5.05
5.10
5.15
5.20
5.25
5.30
5.35
5.40
5.45
5.50
5.55
5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95
6.00
6.05
6.10
6.15
6.20
6.25
6.30
6.35
6.40
6.45
6.50
6.55
6.60
6.65
6.70
6.75
6.80
6.85
6.90
6.95
0
10
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Density
Residual Density Plot
Model
0
1
2
3
4
5
6
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75
6.00
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60
3.62
3.64
3.66
3.68
3.70
3.72
3.74
3.76
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00
4.02
4.04
4.06
4.08
4.10
4.12
4.14
4.16
4.18
4.20
4.22
4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38
4.40
4.42
4.44
4.46
4.48
4.50
4.52
4.54
4.56
4.58
4.60
4.62
4.64
4.66
4.68
4.70
4.72
4.74
4.76
4.78
4.80
4.82
4.84
4.86
4.88
4.90
4.92
4.94
4.96
4.98
5.00
5.02
5.04
5.06
5.08
5.10
5.12
5.14
5.16
5.18
5.20
5.22
5.24
5.26
5.28
5.30
5.32
5.34
5.36
5.38
5.40
5.42
5.44
5.46
5.48
5.50
5.52
5.54
5.56
5.58
5.60
5.62
5.64
5.66
5.68
5.70
5.72
5.74
5.76
5.78
5.80
5.82
5.84
5.86
5.88
5.90
5.92
5.94
5.96
5.98
6.00
0
10
5.0304379213924394.849126303774827
4.3372907408324934.546486309775839
3.93182563272432354.435266269751766
3.6441435602725444.321487713242843
3.42100000895833523.777886816657564
3.2386784521643813.519920055137825
3.0845277723371233.066653639670291
2.95099637971259862.974939430466788
2.83321334405621572.754476772506538
2.727852828398392.6504700902985157
2.63254264859406552.5787415371050924
2.54553127160443452.558023260288764
2.46548856393089852.5516529634902203
2.3913805917771772.4342263079638076
2.32238772029022572.2385502412736846
2.25784919915265462.210488361280645
2.1972245773362192.175133327545241
2.14006616349627082.1544677883983723
2.0859989422259952.099873146749779
2.03470564783844442.071110590478447
1.98591548366901272.046510171426264
1.93939546803411921.9378980359859315
1.89494370546328561.9198079633268763
1.85238409104448981.9020617234919825
1.8115620965242351.8948265958223676
1.77234138337095361.8596423436573657
1.73460105538810621.8572570364228518
1.69823341121723151.8361226115744023
1.66314209140596141.7656634366223336
1.62924053973028031.7172506407297523
1.59645071690728951.640709739221364
1.56470201859270871.6359874227092421
1.53393035992595531.5686930939312203
1.50407739677627421.5625832608940509
1.4750898599030221.552894614678811
1.44691898293632511.5403973311292931
1.4195200087482111.4062047404852398
1.39285176166604961.3882331349132497
1.36687627526278921.3569640889352983
1.34155846727849931.3498591874374009
1.31686585468812761.333312852096593
1.2927683031090671.2793470061020817
1.26923780569887311.267967047839499
1.24624828747417451.2481848700132037
1.22377543162211591.1680853169366543
1.20179652490334021.150851879078955
1.18029031968237691.1055776882799617
1.15923691048454461.0688352314679017
1.1386176232818091.0469183907994453
1.11841491596428951.0397481958307242
1.09861228866810961.0366308573852872
1.0791942028110081.0052987276911627
1.06014600784031380.9991353722286697
1.04145387482816120.9939344909314978
1.02310473615996430.9460666648518251
1.0050862306572860.927142489052747
0.98738665355788520.9248598701591062
0.96999491084601620.9059038837516363
0.95290047748671610.8947166358524095
0.93609335917033460.8888354133653826
0.91956405721912420.8708627723703919
0.9033035363473440.8653928925504142
0.88730319500090280.8636347129666797
0.87155483803276370.8292741542404523
0.85605065149679830.8283672965445246
0.84078317936600990.7862202935961343
0.82574530200146950.7815598820478262
0.81093021621632880.7705032647461231
0.79633141679517620.764276097033896
0.78194267934307640.7543139214317361
0.767758044351120.74579262540607
0.75377180237638020.7401693336723983
0.73997848024404440.7097787326966105
0.72637282818826590.6875547621162065
0.71294980785612490.6820242456827418
0.69970458110610430.6750104247512824
0.68663249953875160.6691428284405003
0.67372909470284370.6399632586373165
0.6609900689254140.6318472357400738
0.64841128671855390.6274971201755893
0.63598876671999670.6235012505392968
0.62371867412818240.6167970589628301
0.61159731359583750.6155809126619678
0.59962112254912180.5973710472123195
0.5877866649021190.561618085385884
0.57609062513892770.5571637928754466
0.56452980273785180.5459936216848235
0.5531011069142290.5350414355483559
0.54180155166029560.5265813837769683
0.53062825106217040.5252764403078259
0.51957841487558540.5045999874840756
0.50864934434339510.5045999874840756
0.49783842823917950.4988089981666753
0.48714313912243160.4822396831982965
0.476561029791894630.46867099561933473
0.466089729924599240.4610367766470673
0.45572694288905260.45597747438021813
0.445470442721863540.4471684420775922
0.435318071257845550.43281841639489427
0.42526773540434410.4206805806895957
0.415317404551176050.4104988618303065
0.405465108108164330.4098397221105362
0.39570893316279970.401885235490791
0.386047022251062740.39504185689882426
0.37647757123491210.39051463514006873
0.366998827280368370.38736315907781566
0.35760908693052930.3773475930873851
0.34830669426821580.37301538172157467
0.33909003916329170.35805829968323194
0.32995755560001920.35805829968323194
0.32090772008010140.351070234042606
0.31193905009734090.3380221692157422
0.30305010268009490.3330781422330382
0.294239472997939950.31078036257503777
0.28550579302918540.2843283451380727
0.27684773028607080.2843283451380727
0.26826398659467930.2805905930887117
0.25975329692677070.27690057589217987
0.251314428280906050.266933010349829
0.242946178610389470.26611122645248475
0.23464737579569440.2643531989807216
0.22641687665917890.2514654593146977
0.218253566020017970.24738322692245518
0.210156355787398580.2314765953239744
0.202124184090134330.2269023843440668
0.194156014440957480.2269023843440668
0.18625083493384420.22390207589492384
0.17840765747281830.19939783507683848
0.170625517030763340.16411485264300613
0.162903470936853030.1425584571702409
0.15524059819128390.1416046556184939
0.147635998806064620.13623021707644528
0.14008879317068170.12070366097014722
0.13259812144152410.11909022902799424
0.125163142954006020.1010730102623559
0.117783035656383440.08013759773623681
0.110456995564310540.0785295180861079
0.103184236235230760.0769534494431139
0.09596398826174370.07643509806401041
0.088795498783131170.07540876476521108
0.081678031014267180.07339694313989507
0.074610863791174720.07143839697900382
0.067593291132528180.0672193138746339
0.060624621816434840.06542449444642784
0.053704178971861060.06542449444642784
0.046831299684099020.06498327737726116
0.040005334613699160.06367728180843654
0.03322564762832040.06239736345807489
0.0264916154469763240.05991371244500346
0.0198026272961797120.028702818431558298
0.0131580845775111350.02774432795681493
0.0065574005461590750.02539900490973629
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0
1
2
3
4
5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30
1.32
1.34
1.36
1.38
1.40
1.42
1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58
1.60
1.62
1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88
1.90
1.92
1.94
1.96
1.98
2.00
2.02
2.04
2.06
2.08
2.10
2.12
2.14
2.16
2.18
2.20
2.22
2.24
2.26
2.28
2.30
2.32
2.34
2.36
2.38
2.40
2.42
2.44
2.46
2.48
2.50
2.52
2.54
2.56
2.58
2.60
2.62
2.64
2.66
2.68
2.70
2.72
2.74
2.76
2.78
2.80
2.82
2.84
2.86
2.88
2.90
2.92
2.94
2.96
2.98
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14
3.16
3.18
3.20
3.22
3.24
3.26
3.28
3.30
3.32
3.34
3.36
3.38
3.40
3.42
3.44
3.46
3.48
3.50
3.52
3.54
3.56
3.58
3.60
3.62
3.64
3.66
3.68
3.70
3.72
3.74
3.76
3.78
3.80
3.82
3.84
3.86
3.88
3.90
3.92
3.94
3.96
3.98
4.00
4.02
4.04
4.06
4.08
4.10
4.12
4.14
4.16
4.18
4.20
4.22
4.24
4.26
4.28
4.30
4.32
4.34
4.36
4.38
4.40
4.42
4.44
4.46
4.48
4.50
4.52
4.54
4.56
4.58
4.60
4.62
4.64
4.66
4.68
4.70
4.72
4.74
4.76
4.78
4.80
4.82
4.84
4.86
4.88
4.90
4.92
4.94
4.96
4.98
5.00
0
5
Empirical
Residual Quantile Plot
Model
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
0.99216477983811310.9934640522875817
0.98939560042548590.9869281045751634
0.98814809031759610.9803921568627451
0.98671988815947250.9738562091503268
0.977129029049780.9673202614379085
0.97039819841475280.9607843137254902
0.95342324302632440.954248366013072
0.94894947398295640.9477124183006536
0.9363576896347610.9411764705882353
0.92938199158420630.934640522875817
0.92413057717677650.9281045751633987
0.92254229707269930.9215686274509803
0.92204729352994110.9150326797385621
0.9123344530479220.9084967320261438
0.89338704454368660.9019607843137255
0.8903529119541910.8954248366013072
0.88640699241576680.8888888888888888
0.88403510794675650.8823529411764706
0.87752803676577320.8758169934640523
0.87395428123195980.869281045751634
0.87081504882951820.8627450980392157
0.85599367200845470.8562091503267973
0.85336488125292060.8496732026143791
0.85073943224568560.8431372549019608
0.84965559686623560.8366013071895425
0.84427168237051950.8300653594771242
0.84389977911242760.8235294117647058
0.84056558165702720.8169934640522876
0.8289267474330290.8104575163398693
0.82044085751570380.803921568627451
0.80615758410807990.7973856209150327
0.80524003409110010.7908496732026143
0.79168274438320470.7843137254901961
0.79040606455386730.7777777777777778
0.78836551394013890.7712418300653595
0.78570406193800270.7647058823529411
0.75492836918238330.7581699346405228
0.75048422389636270.7516339869281046
0.74255883976608160.7450980392156863
0.74072323249842640.738562091503268
0.7363974630335960.7320261437908496
0.72178108359561580.7254901960784313
0.71859688025220150.7189542483660131
0.71297468743274550.7124183006535948
0.68903823514104070.7058823529411765
0.68363285200169670.6993464052287581
0.66898039914705810.6928104575163399
0.65659172428621660.6862745098039216
0.64898221623389320.6797385620915033
0.6464563054722550.673202614379085
0.64535247050146950.6666666666666666
0.63406469653364010.6601307189542484
0.63180234249770530.6535947712418301
0.62988240182309680.6470588235294118
0.61173479889901110.6405228758169934
0.60431723570802580.6339869281045751
0.60341301114694160.6274509803921569
0.59582360852702120.6209150326797386
0.59127660020909150.6143790849673203
0.58886572446003250.6078431372549019
0.58140975468964540.6013071895424836
0.5791138428975840.5947712418300654
0.57837319854699180.5882352941176471
0.56363409425850340.5816993464052288
0.56323819299271860.5751633986928104
0.54443655869594080.5686274509803921
0.54230849058820960.5620915032679739
0.53721989121797110.5555555555555556
0.53432909045764880.5490196078431373
0.52966681041664530.5424836601307189
0.52564183743963880.5359477124183006
0.52296686909046260.5294117647058824
0.50824700571708980.5228758169934641
0.49719595739640980.5163398692810458
0.4944074876445680.5098039215686274
0.49084888719383320.5032679738562091
0.487852612132934070.49673202614379086
0.47268820215885170.49019607843137253
0.46839111348590450.48366013071895425
0.46607351614107460.477124183006536
0.463935747237759540.47058823529411764
0.460329795801460330.46405228758169936
0.459673078627798940.45751633986928103
0.449743665835916240.45098039215686275
0.4297144538229630.4444444444444444
0.427168569338066630.43790849673202614
0.42073407389035330.43137254901960786
0.41435497688063630.42483660130718953
0.409379372405991870.41830065359477125
0.408608142779182450.4117647058823529
0.39625296649945240.40522875816993464
0.39625296649945240.39869281045751637
0.39274653081141690.39215686274509803
0.38260093615316670.38562091503267976
0.374166548764272850.3790849673202614
0.36937051546640410.37254901960784315
0.36617188569114310.3660130718954248
0.36056380875752530.35947712418300654
0.351321729549780970.35294117647058826
0.34340020142840190.3464052287581699
0.33668073707683930.33986928104575165
0.3362433728775350.3333333333333333
0.330942474656998550.32679738562091504
0.326348158318239660.3202614379084967
0.323291473117626850.3137254901960784
0.32115547839376980.30718954248366015
0.31432230435807570.3006535947712418
0.31134535993144620.29411764705882354
0.30096767954430290.2875816993464052
0.30096767954430290.28104575163398693
0.296065688033069150.27450980392156865
0.286820522906664270.2679738562091503
0.28328581367953050.26143790849673204
0.26712517506716560.2549019607843137
0.247480481988051840.24836601307189543
0.247480481988051840.24183006535947713
0.244662487415724830.23529411764705882
0.24187013025057080.22875816993464052
0.23427563464536260.2222222222222222
0.233646116063420780.21568627450980393
0.23229765991819570.20915032679738563
0.222339681933806040.20261437908496732
0.219158603259653060.19607843137254902
0.20663873635082040.1895424836601307
0.203001421967990870.1830065359477124
0.203001421967990870.17647058823529413
0.200606589578934320.16993464052287582
0.180776087514254250.16339869281045752
0.151355452786517850.1568627450980392
0.132863137556571640.1503267973856209
0.132035666512745040.1437908496732026
0.12735828766181680.13725490196078433
0.113703435054936140.13071895424836602
0.112272301659122250.12418300653594772
0.096132961092870910.11764705882352941
0.077010663594566870.1111111111111111
0.075525229197095450.10457516339869281
0.074067044702007960.09803921568627451
0.073586961662568480.0915032679738562
0.072635665022676450.08496732026143791
0.070768095420470160.0784313725490196
0.068946368455332020.0718954248366013
0.065009877457233180.06535947712418301
0.063330232140987120.058823529411764705
0.063330232140987120.05228758169934641
0.06291686626590130.0457516339869281
0.061692240341671670.0392156862745098
0.060490514130137870.032679738562091505
0.058154200350691240.026143790849673203
0.0282948055643873520.0196078431372549
0.027362988893899370.013071895424836602
0.025079163788338650.006535947712418301
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Empirical
Residual Probability Plot
The empirical covariance matrix of the parameters and the credible intervals can be obtained with the functions parametervar
and cint
, respectively:
julia> parametervar(fm)
3×3 Matrix{Float64}:
210.232 -0.108249 -0.20519
-0.108249 5.57417e-5 0.000101175
-0.20519 0.000101175 0.0115637
julia> cint(fm, .95)
3-element Vector{Vector{Float64}}:
[-39.25043820184902, 16.596351149913975]
[-0.007719583007889886, 0.02100563222999514]
[0.035250436765367404, 0.44066637811066683]
The 100-year effective return level estimates can be obtained using the function returnlevel
:
julia> nobs = size(data,1)
17531
julia> nobsperblock = 365
365
julia> r = returnlevel(fm, threshold, nobs, nobsperblock, 100)
ReturnLevel
returnperiod : 100
value : Matrix{Float64}[456000]
The corresponding 95% credible interval can be computed using the function cint
:
julia> c = cint(r, 0.95)
152-element Vector{Vector{Real}}:
[63.90230140290233, 168.0372574616761]
[63.90230140290233, 168.0372574616761]
[63.90230140290233, 168.0372574616761]
[63.90230140290233, 168.0372574616761]
[64.11418140628982, 168.3911173704221]
[64.11418140628982, 168.3911173704221]
[64.11418140628982, 168.3911173704221]
[64.48520658159299, 168.09173468161583]
[64.48520658159299, 168.09173468161583]
[64.48520658159299, 168.09173468161583]
⋮
[74.00108362294426, 222.6767296225598]
[74.00108362294426, 222.6767296225598]
[74.00108362294426, 222.6767296225598]
[74.00108362294426, 222.6767296225598]
[74.00108362294426, 222.6767296225598]
[73.08731068757521, 224.4069539397245]
[73.08731068757521, 224.4069539397245]
[71.70757332656396, 225.85208724974973]
[71.70757332656396, 225.85208724974973]
The 100-year effective return levels along with their 95% credible intervals can be illustrated as follows:
df_plot = DataFrame(Year=df.Year, ReturnLevel = vec(mean(r.value, dims=1)),
LowerBound = first.(c), UpperBound=last.(c))
set_default_plot_size(12cm, 8cm)
plot(df_plot, x=:Year, y=:ReturnLevel, Geom.line,
ymin=:LowerBound, ymax=:UpperBound, Geom.ribbon,
Guide.ylabel("100-year effective return level"))
Year
1910
1920
1930
1940
1950
1960
1970
1910.0
1912.5
1915.0
1917.5
1920.0
1922.5
1925.0
1927.5
1930.0
1932.5
1935.0
1937.5
1940.0
1942.5
1945.0
1947.5
1950.0
1952.5
1955.0
1957.5
1960.0
1962.5
1965.0
1967.5
1970.0
1910.0
1910.2
1910.4
1910.6
1910.8
1911.0
1911.2
1911.4
1911.6
1911.8
1912.0
1912.2
1912.4
1912.6
1912.8
1913.0
1913.2
1913.4
1913.6
1913.8
1914.0
1914.2
1914.4
1914.6
1914.8
1915.0
1915.2
1915.4
1915.6
1915.8
1916.0
1916.2
1916.4
1916.6
1916.8
1917.0
1917.2
1917.4
1917.6
1917.8
1918.0
1918.2
1918.4
1918.6
1918.8
1919.0
1919.2
1919.4
1919.6
1919.8
1920.0
1920.2
1920.4
1920.6
1920.8
1921.0
1921.2
1921.4
1921.6
1921.8
1922.0
1922.2
1922.4
1922.6
1922.8
1923.0
1923.2
1923.4
1923.6
1923.8
1924.0
1924.2
1924.4
1924.6
1924.8
1925.0
1925.2
1925.4
1925.6
1925.8
1926.0
1926.2
1926.4
1926.6
1926.8
1927.0
1927.2
1927.4
1927.6
1927.8
1928.0
1928.2
1928.4
1928.6
1928.8
1929.0
1929.2
1929.4
1929.6
1929.8
1930.0
1930.2
1930.4
1930.6
1930.8
1931.0
1931.2
1931.4
1931.6
1931.8
1932.0
1932.2
1932.4
1932.6
1932.8
1933.0
1933.2
1933.4
1933.6
1933.8
1934.0
1934.2
1934.4
1934.6
1934.8
1935.0
1935.2
1935.4
1935.6
1935.8
1936.0
1936.2
1936.4
1936.6
1936.8
1937.0
1937.2
1937.4
1937.6
1937.8
1938.0
1938.2
1938.4
1938.6
1938.8
1939.0
1939.2
1939.4
1939.6
1939.8
1940.0
1940.2
1940.4
1940.6
1940.8
1941.0
1941.2
1941.4
1941.6
1941.8
1942.0
1942.2
1942.4
1942.6
1942.8
1943.0
1943.2
1943.4
1943.6
1943.8
1944.0
1944.2
1944.4
1944.6
1944.8
1945.0
1945.2
1945.4
1945.6
1945.8
1946.0
1946.2
1946.4
1946.6
1946.8
1947.0
1947.2
1947.4
1947.6
1947.8
1948.0
1948.2
1948.4
1948.6
1948.8
1949.0
1949.2
1949.4
1949.6
1949.8
1950.0
1950.2
1950.4
1950.6
1950.8
1951.0
1951.2
1951.4
1951.6
1951.8
1952.0
1952.2
1952.4
1952.6
1952.8
1953.0
1953.2
1953.4
1953.6
1953.8
1954.0
1954.2
1954.4
1954.6
1954.8
1955.0
1955.2
1955.4
1955.6
1955.8
1956.0
1956.2
1956.4
1956.6
1956.8
1957.0
1957.2
1957.4
1957.6
1957.8
1958.0
1958.2
1958.4
1958.6
1958.8
1959.0
1959.2
1959.4
1959.6
1959.8
1960.0
1960.2
1960.4
1960.6
1960.8
1961.0
1961.2
1961.4
1961.6
1961.8
1962.0
1962.2
1962.4
1962.6
1962.8
1963.0
1963.2
1963.4
1963.6
1963.8
1964.0
1964.2
1964.4
1964.6
1964.8
1965.0
1965.2
1965.4
1965.6
1965.8
1966.0
1966.2
1966.4
1966.6
1966.8
1967.0
1967.2
1967.4
1967.6
1967.8
1968.0
1968.2
1968.4
1968.6
1968.8
1969.0
1969.2
1969.4
1969.6
1969.8
1970.0
1900
2000
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0
50
100
150
200
250
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
0
250
100-year effective return level