Non-Stationary Threshold Exceedance Model

In the non-stationary threshold exceedance model, the GP parameters are allowed to be functions of multiple covariates:

\[ ϕ = X₂ × β₂ \\ ξ = X₃ × β₃ \]

where $(X₂,β₂)$ and $(X₃,β₃)$ are respectively the design matrix and the corresponding coefficient parameter vector of $ϕ$ and $ξ$.

Intercept

An intercept is included in all parameter functions by default.

The non-stationary ThresholdExceedance model is illustrated using the daily rainfall accumulations at a location in south-west England from 1914 to 1962, studied by Coles (2001) in Chapter 6.

Load the data

Loading the daily rainfall accumulations:

data = Extremes.dataset("rain")
first(data,5)
5×2 DataFrame
RowDateRainfall
DateFloat64
11914-01-010.0
21914-01-022.3
31914-01-031.3
41914-01-046.9
51914-01-054.6

Extract the exceedances over the threshold of 30 mm:

threshold = 30.0
df = filter(row -> row.Rainfall > threshold, data)
df[!,:Exceedance] = df[:,:Rainfall] .- threshold
df[!,:Year] = year.(df[:,:Date])
plot(df, x=:Date, y=:Exceedance, Geom.point)
Date Jan 1, 1910 1920 1930 1940 1950 1960 1970 Jan 1, 1910 1912 1915 1918 1920 1922 1925 1928 1930 1932 1935 1938 1940 1942 1945 1948 1950 1952 1955 1958 1960 1962 1965 1968 1970 Jan 1, 1910 Apr Jul Oct Jan 1911 Apr Jul Oct Jan 1912 Apr Jul Oct Jan 1913 Apr Jul Oct Jan 1914 Apr Jul Oct Jan 1915 Apr Jul Oct Jan 1916 Apr Jul Oct Jan 1917 Apr Jul Oct Jan 1918 Apr Jul Oct Jan 1919 Apr Jul Oct Jan 1920 Apr Jul Oct Jan 1921 Apr Jul Oct Jan 1922 Apr Jul Oct Jan 1923 Apr Jul Oct Jan 1924 Apr Jul Oct Jan 1925 Apr Jul Oct Jan 1926 Apr Jul Oct Jan 1927 Apr Jul Oct Jan 1928 Apr Jul Oct Jan 1929 Apr Jul Oct Jan 1930 Apr Jul Oct Jan 1931 Apr Jul Oct Jan 1932 Apr Jul Oct Jan 1933 Apr Jul Oct Jan 1934 Apr Jul Oct Jan 1935 Apr Jul Oct Jan 1936 Apr Jul Oct Jan 1937 Apr Jul Oct Jan 1938 Apr Jul Oct Jan 1939 Apr Jul Oct Jan 1940 Apr Jul Oct Jan 1941 Apr Jul Oct Jan 1942 Apr Jul Oct Jan 1943 Apr Jul Oct Jan 1944 Apr Jul Oct Jan 1945 Apr Jul Oct Jan 1946 Apr Jul Oct Jan 1947 Apr Jul Oct Jan 1948 Apr Jul Oct Jan 1949 Apr Jul Oct Jan 1950 Apr Jul Oct Jan 1951 Apr Jul Oct Jan 1952 Apr Jul Oct Jan 1953 Apr Jul Oct Jan 1954 Apr Jul Oct Jan 1955 Apr Jul Oct Jan 1956 Apr Jul Oct Jan 1957 Apr Jul Oct Jan 1958 Apr Jul Oct Jan 1959 Apr Jul Oct Jan 1960 Apr Jul Oct Jan 1961 Apr Jul Oct Jan 1962 Apr Jul Oct Jan 1963 Apr Jul Oct Jan 1964 Apr Jul Oct Jan 1965 Apr Jul Oct Jan 1966 Apr Jul Oct Jan 1967 Apr Jul Oct Jan 1968 Apr Jul Oct Jan 1969 Apr Jul Oct Jan 1970 Jan 1, 1900 2000 1961-09-2815.700000000000003 1961-01-149.399999999999999 1960-10-059.399999999999999 1960-08-097.600000000000001 1959-12-033.5 1959-10-2621.299999999999997 1959-04-011.1999999999999993 1959-02-251.6999999999999993 1959-01-2211.899999999999999 1958-11-2418.799999999999997 1958-11-135.600000000000001 1958-10-161.1999999999999993 1958-04-240.5 1958-01-041.0 1957-10-0217.0 1957-09-018.100000000000001 1957-08-238.399999999999999 1957-02-086.299999999999997 1956-12-096.600000000000001 1956-08-071.0 1956-03-083.5 1956-02-074.299999999999997 1956-01-315.600000000000001 1955-12-274.0 1955-09-279.399999999999999 1955-07-288.100000000000001 1955-07-184.799999999999997 1955-01-1210.100000000000001 1954-12-183.0 1954-11-023.0 1954-11-0112.399999999999999 1954-10-175.299999999999997 1953-11-2525.4 1953-11-217.600000000000001 1953-07-2412.899999999999999 1952-10-2517.799999999999997 1952-10-236.799999999999997 1952-06-200.5 1952-05-175.299999999999997 1952-05-133.5 1951-08-1529.4 1951-07-075.299999999999997 1950-11-0321.6 1950-06-083.799999999999997 1950-05-211.8000000000000007 1950-03-0514.5 1950-02-140.1999999999999993 1950-02-029.399999999999999 1949-11-190.5 1949-08-1915.200000000000003 1949-08-075.600000000000001 1948-11-161.8000000000000007 1948-10-222.0 1948-10-171.8000000000000007 1948-10-164.299999999999997 1948-08-248.100000000000001 1948-07-1614.200000000000003 1947-12-0225.9 1946-08-155.600000000000001 1946-07-193.0 1946-03-110.5 1945-11-2611.899999999999999 1945-11-2255.3 1945-11-1821.299999999999997 1945-09-061.8000000000000007 1945-09-0225.9 1945-08-090.5 1945-08-080.5 1944-10-196.299999999999997 1943-12-1617.0 1943-11-169.899999999999999 1942-05-3110.899999999999999 1942-02-073.0 1942-01-297.100000000000001 1942-01-104.299999999999997 1941-12-0942.400000000000006 1941-05-160.5 1940-08-228.100000000000001 1939-11-033.0 1939-11-022.0 1939-07-1217.0 1939-02-153.299999999999997 1938-11-041.0 1938-04-038.399999999999999 1937-12-086.799999999999997 1937-11-246.100000000000001 1937-11-110.1999999999999993 1937-08-211.1999999999999993 1937-08-0237.3 1937-07-054.0 1936-02-252.5 1936-01-217.299999999999997 1935-12-131.8000000000000007 1935-06-2929.200000000000003 1934-11-1324.9 1934-10-0453.3 1933-12-0712.700000000000003 1933-08-0410.899999999999999 1932-10-090.1999999999999993 1932-07-140.5 1931-10-073.5 1931-06-3023.299999999999997 1931-01-085.100000000000001 1930-11-0229.4 1930-09-0213.399999999999999 1930-08-030.6999999999999993 1929-08-1918.5 1928-12-034.299999999999997 1928-11-2317.5 1928-11-1817.799999999999997 1928-11-175.600000000000001 1928-10-0456.599999999999994 1928-08-0215.700000000000003 1928-07-270.5 1928-02-016.600000000000001 1927-12-103.799999999999997 1927-01-274.0 1926-12-202.299999999999997 1926-07-1346.7 1926-01-277.799999999999997 1925-11-085.299999999999997 1925-11-074.799999999999997 1925-10-311.8000000000000007 1924-12-313.5 1924-10-313.5 1924-10-211.8000000000000007 1924-09-1815.700000000000003 1924-02-110.5 1923-10-072.799999999999997 1923-04-134.299999999999997 1922-10-250.5 1922-02-0810.600000000000001 1922-02-065.299999999999997 1922-02-0518.5 1921-12-182.5 1921-09-110.5 1920-03-123.0 1918-11-012.299999999999997 1918-01-181.8000000000000007 1918-01-150.5 1917-08-279.100000000000001 1917-06-283.0 1916-11-041.8000000000000007 1916-08-292.0 1916-02-038.100000000000001 1915-12-145.600000000000001 1915-02-1613.200000000000003 1915-02-130.5 1914-12-3014.5 1914-12-171.8000000000000007 1914-03-082.5 1914-02-071.8000000000000007 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 10 20 30 40 50 60 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 14.2 14.4 14.6 14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0 17.2 17.4 17.6 17.8 18.0 18.2 18.4 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 22.2 22.4 22.6 22.8 23.0 23.2 23.4 23.6 23.8 24.0 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 25.8 26.0 26.2 26.4 26.6 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 28.6 28.8 29.0 29.2 29.4 29.6 29.8 30.0 30.2 30.4 30.6 30.8 31.0 31.2 31.4 31.6 31.8 32.0 32.2 32.4 32.6 32.8 33.0 33.2 33.4 33.6 33.8 34.0 34.2 34.4 34.6 34.8 35.0 35.2 35.4 35.6 35.8 36.0 36.2 36.4 36.6 36.8 37.0 37.2 37.4 37.6 37.8 38.0 38.2 38.4 38.6 38.8 39.0 39.2 39.4 39.6 39.8 40.0 40.2 40.4 40.6 40.8 41.0 41.2 41.4 41.6 41.8 42.0 42.2 42.4 42.6 42.8 43.0 43.2 43.4 43.6 43.8 44.0 44.2 44.4 44.6 44.8 45.0 45.2 45.4 45.6 45.8 46.0 46.2 46.4 46.6 46.8 47.0 47.2 47.4 47.6 47.8 48.0 48.2 48.4 48.6 48.8 49.0 49.2 49.4 49.6 49.8 50.0 50.2 50.4 50.6 50.8 51.0 51.2 51.4 51.6 51.8 52.0 52.2 52.4 52.6 52.8 53.0 53.2 53.4 53.6 53.8 54.0 54.2 54.4 54.6 54.8 55.0 55.2 55.4 55.6 55.8 56.0 56.2 56.4 56.6 56.8 57.0 57.2 57.4 57.6 57.8 58.0 58.2 58.4 58.6 58.8 59.0 59.2 59.4 59.6 59.8 60.0 0 100 Exceedance

Non-stationary parameter estimation can be performed either by maximum likelihood or by the Bayesian approach. Probability weighted moment estimation cannot be used in the non-stationary case.

Maximum likelihood inference

GP parameter estimation

The GP parameter estimation with maximum likelihood is performed with the gpfit function. The parameter estimate vector $\mathbf{θ̂} = (\mathbf{β̂₂},\, \mathbf{β̂₃})^\top$ is contained in the field θ̂ of the returned structure.

Several non-stationary model can be fitted.

The stationary model

julia> fm₀ = gpfit(df, :Exceedance)MaximumLikelihoodAbstractExtremeValueModel
model :
	ThresholdExceedance
	data :		Vector{Float64}[152]
	logscale :	ϕ ~ 1
	shape :		ξ ~ 1

θ̂  :	[2.006896498380506, 0.1844926991237574]

The logscale parameter varying as a linear function of the year

julia> fm₁ = gpfit(df, :Exceedance, logscalecovid = [:Year])MaximumLikelihoodAbstractExtremeValueModel
model :
	ThresholdExceedance
	data :		Vector{Float64}[152]
	logscale :	ϕ ~ 1 + Year
	shape :		ξ ~ 1

θ̂  :	[-11.205671606002209, 0.006804339309339082, 0.1976859276224044]

Confidence intervals for the parameters are obtained with the cint function:

julia> cint(fm₁)3-element Vector{Vector{Float64}}:
 [-38.83131900584391, 16.419975793839495]
 [-0.007421606369680473, 0.021030284988358634]
 [-0.0018240741601000532, 0.39719592940490883]

In particular, the 95% confidence interval for the rise in the log-scale parameter per year is as follows:

julia> cint(fm₁)[2]2-element Vector{Float64}:
 -0.007421606369680473
  0.021030284988358634

Diagnostic plots

Several diagnostic plots for assessing the accuracy of the GP model fitted to the rainfall data can be shown with the diagnosticplots function:

set_default_plot_size(21cm ,16cm)
diagnosticplots(fm₁)
h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? Data 0 2 4 6 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20 6.25 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 6.90 6.95 0 10 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 Density Residual Density Plot Model 0 1 2 3 4 5 6 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 0 10 5.0304379213924394.933188168790678 4.3372907408324934.621361391856679 3.93182563272432354.507081990053188 3.6441435602725444.3894772778589655 3.42100000895833523.831051415822922 3.2386784521643813.5663068795344564 3.0845277723371233.1020322596018963 2.95099637971259863.008359903410684 2.83321334405621572.7834516616833533 2.727852828398392.677012116865418 2.63254264859406552.604044259191286 2.54553127160443452.582681213416634 2.46548856393089852.576457709874402 2.3913805917771772.4568777269124946 2.32238772029022572.2571749469274405 2.25784919915265462.228977520040807 2.1972245773362192.1930914696615726 2.14006616349627082.1717642922265283 2.0859989422259952.116249900071746 2.03470564783844442.0870191004414025 1.98591548366901272.0624633491050854 1.93939546803411921.951661248521431 1.89494370546328561.9331628251463757 1.85238409104448981.9154860127627287 1.8115620965242351.9079957827398926 1.77234138337095361.8724890090733364 1.73460105538810621.8702653465791534 1.69823341121723151.8487420177635987 1.66314209140596141.77680767042079 1.62924053973028031.7282491297518188 1.59645071690728951.6503605808151727 1.56470201859270871.6458009826074187 1.53393035992595531.5777819502982873 1.50407739677627421.571470569560064 1.4750898599030221.5616387203016717 1.44691898293632511.548819149242128 1.4195200087482111.4129461234941354 1.39285176166604961.3950940586053122 1.36687627526278921.363401172539862 1.34155846727849931.356099916212751 1.31686585468812761.3395854161645866 1.2927683031090671.2849412745909754 1.26923780569887311.2732102493280892 1.24624828747417451.2536252349357335 1.22377543162211591.1726108788432468 1.20179652490334021.1549858578065524 1.18029031968237691.1096437706531868 1.15923691048454461.072544365088827 1.1386176232818091.0502541169412336 1.11841491596428951.043121213338547 1.09861228866810961.04011279062199 1.0791942028110081.008567176697147 1.06014600784031381.0023627053410267 1.04145387482816120.9969614869893617 1.02310473615996430.948793354918878 1.0050862306572860.929646533303652 0.98738665355788520.9274970654658118 0.96999491084601620.9083921201612516 0.95290047748671610.8971406477410884 0.93609335917033460.8910199969772384 0.91956405721912420.873022919196923 0.9033035363473440.8675905449511441 0.88730319500090280.8657138820922912 0.87155483803276370.830993259920531 0.85605065149679830.8303699771953186 0.84078317936600990.7879138480630313 0.82574530200146950.7831346252252847 0.81093021621632880.7720567913802876 0.79633141679517620.7656987860731047 0.78194267934307640.7556464561090074 0.767758044351120.7472774942935748 0.75377180237638020.7414435753567487 0.73997848024404440.7110740918476818 0.72637282818826590.6885951203947257 0.71294980785612490.6831182721117486 0.69970458110610430.6759586931405593 0.68663249953875160.6701900547640602 0.67372909470284370.6409091205532756 0.6609900689254140.6327660471369407 0.64841128671855390.6283615716281516 0.63598876671999670.6243529369868255 0.62371867412818240.6174779138941003 0.61159731359583750.6164076522483242 0.59962112254912180.5979969805087463 0.5877866649021190.5621029638710296 0.57609062513892770.5577565809390205 0.56452980273785180.5464879358900719 0.5531011069142290.5354328857068853 0.54180155166029560.5269864983456022 0.53062825106217040.525723226120812 0.51957841487558540.5048806623484644 0.50864934434339510.5048806623484644 0.49783842823917950.49919964257275484 0.48714313912243160.4824811051183908 0.476561029791894630.4689640051680159 0.466089729924599240.46128896443684786 0.45572694288905260.45609461184918504 0.445470442721863540.44727429903730453 0.435318071257845550.43295577610519276 0.42526773540434410.420832475218871 0.415317404551176050.4105301524271518 0.405465108108164330.4099786094174644 0.39570893316279970.40201509348699 0.386047022251062740.3950921425383683 0.37647757123491210.3904766033444264 0.366998827280368370.3874068453865685 0.35760908693052930.3773832709598199 0.34830669426821580.3729670717656384 0.33909003916329170.35808044000234324 0.32995755560001920.35808044000234324 0.32090772008010140.3509771135544947 0.31193905009734090.33795941991092426 0.30305010268009490.33298090397928626 0.294239472997939950.31062902149868094 0.28550579302918540.28414672474201785 0.27684773028607080.28414672474201785 0.26826398659467930.28041055334812415 0.25975329692677070.27672217613392175 0.251314428280906050.2667931450760321 0.242946178610389470.26593806800811287 0.23464737579569440.26418095662519875 0.22641687665917890.25133226027711447 0.218253566020017970.24722069559685753 0.210156355787398580.2313245397313478 0.202124184090134330.22675357553828582 0.194156014440957480.22675357553828582 0.18625083493384420.22375545161441568 0.17840765747281830.19925683955327364 0.170625517030763340.16393913116857198 0.162903470936853030.1424145783532699 0.15524059819128390.14146220879447632 0.147635998806064620.13606572184766488 0.14008879317068170.12056613163553989 0.13259812144152410.11895551036988877 0.125163142954006020.10092570900559703 0.117783035656383440.08000201874213682 0.110456995564310540.07839795282290105 0.103184236235230760.07682580529956196 0.09596398826174370.07630874064688528 0.088795498783131170.07528495067338918 0.081678031014267180.0732780967842956 0.074610863791174720.07132436283798894 0.067593291132528180.06711555730471691 0.060624621816434840.06532506952130177 0.053704178971861060.06532506952130177 0.046831299684099020.06488491330159672 0.040005334613699160.06358204821048588 0.03322564762832040.0623051833751499 0.0264916154469763240.0598274143294824 0.0198026272961797120.028650536996048477 0.0131580845775111350.02769481036771507 0.0065574005461590750.02535611689830137 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 0 5 Empirical Residual Quantile Plot Model 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 0.9927964993432420.9934640522875817 0.9901606083287520.9869281045751634 0.98896939933767660.9803921568627451 0.98759278694935490.9738562091503268 0.97831319820801740.9673202614379085 0.97173997111285910.9607843137254902 0.95504225631516710.954248366013072 0.95062741179380480.9477124183006536 0.93817525942387580.9411764705882353 0.93123168080181680.934640522875817 0.92602619679451770.9281045751633987 0.92442889013056060.9215686274509803 0.92395710650983950.9150326797385621 0.9142978809156730.9084967320261438 0.89535430278856550.9019607843137255 0.8923615679715660.8954248366013072 0.88842870436181140.8888888888888888 0.88602364817370380.8823529411764706 0.87951739581366640.8758169934640523 0.87594361518031040.869281045751634 0.87285960734418590.8627450980392157 0.85796208479301840.8562091503267973 0.85531015466097250.8496732026143791 0.85272976002608790.8431372549019608 0.85162253052797080.8366013071895425 0.84625947636254160.8300653594771242 0.84591722894594610.8235294117647058 0.84256490765663480.8169934640522876 0.83082264397759020.8104575163398693 0.82240491613576570.803921568627451 0.80801932840832780.7973856209150327 0.80714197501273950.7908496732026143 0.79356753174274080.7843137254901961 0.79226053770886520.7777777777777778 0.79020800104913710.7712418300653595 0.78750124495405140.7647058823529411 0.75657493461039320.7581699346405228 0.75219027336626450.7516339869281046 0.74421068779200720.7450980392156863 0.74233626998222960.738562091503268 0.73804575193201260.7320261437908496 0.72333316947229780.7254901960784313 0.72006847221067050.7189542483660131 0.71453196994156710.7124183006535948 0.69044233229778220.7058823529411765 0.68493800746044650.6993464052287581 0.6703236194384790.6928104575163399 0.65786311213604990.6862745098039216 0.65015116470153940.6797385620915033 0.64764680562602880.673202614379085 0.64658518216645120.6666666666666666 0.63525878494096220.6601307189542484 0.63298872353650270.6535947712418301 0.63100105240411960.6470588235294118 0.6127920357326170.6405228758169934 0.60530680338144280.6339869281045751 0.60445751061274390.6274509803921569 0.59682804478452540.6209150326797386 0.59226615076367530.6143790849673203 0.58976290132490370.6078431372549019 0.58231299516242130.6013071895424836 0.58003778874340780.5947712418300654 0.57924892127180220.5882352941176471 0.56438360893360040.5816993464052288 0.5641120121302240.5751633986928104 0.54520742725872150.5686274509803921 0.54302866997242460.5620915032679739 0.53793827428463040.5555555555555556 0.53499112431071440.5490196078431373 0.53029312831380160.5424836601307189 0.52634567443461020.5359477124183006 0.52357433747771810.5294117647058824 0.50888359006660620.5228758169934641 0.49771878173513450.5163398692810458 0.4949603167554240.5098039215686274 0.49133147025417970.5032679738562091 0.48838866562539680.49673202614379086 0.47318673049961230.49019607843137253 0.46887933746228540.48366013071895425 0.466534870227772850.477124183006536 0.46439211152961440.47058823529411764 0.46069710786394460.46405228758169936 0.46011960367787060.45751633986928103 0.45008798182637610.45098039215686275 0.429990905986424370.4444444444444444 0.427508036346666950.43790849673202614 0.421020342507094750.43137254901960786 0.41458418285349430.42483660130718953 0.409618592967626870.41830065359477125 0.40887230925359330.4117647058823529 0.39642239933732360.40522875816993464 0.39642239933732360.39869281045751637 0.39298370465389430.39215686274509803 0.38274997182966160.38562091503267976 0.37434989707865380.3790849673202614 0.369529532470362850.37254901960784315 0.366246126363946160.3660130718954248 0.36063149394612290.35947712418300654 0.351410825689836840.35294117647058826 0.34349992777159350.3464052287581699 0.33670149240775010.33986928104575165 0.33633555384640030.3333333333333333 0.33102935148563390.32679738562091504 0.326382032480229570.3202614379084967 0.32326573618781530.3137254901960784 0.32118513395736010.30718954248366015 0.31434676744303420.3006535947712418 0.31131209025250730.29411764705882354 0.30098315617161760.2875816993464052 0.30098315617161760.28104575163398693 0.29600013427418880.27450980392156865 0.28677576998617360.2679738562091503 0.283216118255137650.26143790849673204 0.267014252608975040.2549019607843137 0.247343796683107630.24836601307189543 0.247343796683107630.24183006535947713 0.244526484403296940.23529411764705882 0.24173486800006160.22875816993464052 0.23416852890733720.2222222222222222 0.233513403927258060.21568627450980393 0.232165417670268380.20915032679738563 0.222236091428948350.20261437908496732 0.219031681758278780.19607843137254902 0.206518092161629830.1895424836601307 0.202882812736554650.1830065359477124 0.202882812736554650.17647058823529413 0.200489370501916950.16993464052287582 0.180660572466435550.16339869281045752 0.151206314612404860.1568627450980392 0.132738365954871370.1503267973856209 0.131912018943686570.1437908496732026 0.12721473045678850.13725490196078433 0.113581534895862760.13071895424836602 0.112152700118740080.12418300653594772 0.095999810535715520.11764705882352941 0.076885517145348860.1111111111111111 0.075403592429135410.10457516339869281 0.073948847239495980.09803921568627451 0.073469895107895130.0915032679738562 0.072520837141244980.08496732026143791 0.070657653032396460.0784313725490196 0.068840190500379150.0718954248366013 0.064912861056254420.06535947712418301 0.063237099189658250.058823529411764705 0.063237099189658250.05228758169934641 0.062824686416112270.0457516339869281 0.06160287766263720.0392156862745098 0.06040390607611410.032679738562091505 0.05807291732583460.026143790849673203 0.0282440020939022960.0196078431372549 0.0273148250615715130.013071895424836602 0.0250373504757285570.006535947712418301 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 Empirical Residual Probability Plot

The diagnostic plots consist in the residual probability plot (upper left panel), the residual quantile plot (upper right panel) and the residual density plot (lower left panel) of the standardized data (see Chapter 6 of Coles, 2001). These plots can be displayed separately using respectively the probplot, qqplot, histplot and returnlevelplot functions.

Return level estimation

Since the model parameters vary in time, the quantiles also vary in time. Therefore, a T-year return level can be estimated for each year. This set of return levels are referred to as effective return levels as proposed by Katz et al. (2002)[1].

The 100-year effective return levels for the fm₁ model can be computed using the returnlevel function:

julia> nobs = size(data,1)17531
julia> nobsperblock = 365365
julia> r = returnlevel(fm₁, threshold, nobs, nobsperblock, 100)ReturnLevel returnperiod : 100 value : Vector{Float64}[152]

The effective return levels can be accessed as follows:

julia> r.value152-element Vector{Float64}:
  96.07236738849316
  96.07236738849316
  96.07236738849316
  96.07236738849316
  96.523479213636
  96.523479213636
  96.523479213636
  96.97767102345072
  96.97767102345072
  96.97767102345072
   ⋮
 119.74262810056645
 119.74262810056645
 119.74262810056645
 119.74262810056645
 119.74262810056645
 120.35534961117199
 120.35534961117199
 120.97225450327086
 120.97225450327086

The corresponding confidence interval can be computed with the cint function:

julia> c = cint(r)152-element Vector{Vector{Real}}:
 [55.894149909256036, 136.25058486773028]
 [55.894149909256036, 136.25058486773028]
 [55.894149909256036, 136.25058486773028]
 [55.894149909256036, 136.25058486773028]
 [56.49568315762775, 136.55127526964424]
 [56.49568315762775, 136.55127526964424]
 [56.49568315762775, 136.55127526964424]
 [57.086045158813825, 136.86929688808763]
 [57.086045158813825, 136.86929688808763]
 [57.086045158813825, 136.86929688808763]
 ⋮
 [61.3830404173303, 178.1022157838026]
 [61.3830404173303, 178.1022157838026]
 [61.3830404173303, 178.1022157838026]
 [61.3830404173303, 178.1022157838026]
 [61.3830404173303, 178.1022157838026]
 [60.873037890298875, 179.83766133204512]
 [60.873037890298875, 179.83766133204512]
 [60.335753531546054, 181.60875547499566]
 [60.335753531546054, 181.60875547499566]

The effective return levels along with their confidence intervals can be plotted as follows:

rmin = [c[i][1] for i in eachindex(c)]
rmax = [c[i][2] for i in eachindex(c)]
df_plot = DataFrame(Year = year.(df[:,:Date]), r = r.value, rmin = rmin, rmax = rmax)
set_default_plot_size(12cm, 8cm)
plot(df_plot, x=:Year, y=:r, ymin=:rmin, ymax=rmax, Geom.line, Geom.ribbon,
    Coord.cartesian(xmin=1910, xmax=1965), Guide.xticks(ticks=1910:5:1965),
    Guide.ylabel("100-year Effective Return Level"))
Year 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 50 100 150 200 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 0 200 100-year Effective Return Level

Bayesian Inference

Most functions described in the previous sections also work in the Bayesian context. To reproduce exactly the results, the seed should be fixed as follows:

import Random
Random.seed!(4786)

GP parameter estimation

The Bayesian GP parameter estimation is performed with the gpfitbayes function:

julia> fm = gpfitbayes(df, :Exceedance, logscalecovid = [:Year])
Progress:  12%|█████                                    |  ETA: 0:00:01
Progress:  24%|█████████▉                               |  ETA: 0:00:01
Progress:  38%|███████████████▌                         |  ETA: 0:00:01
Progress:  52%|█████████████████████▌                   |  ETA: 0:00:00
Progress:  67%|███████████████████████████▌             |  ETA: 0:00:00
Progress:  82%|█████████████████████████████████▋       |  ETA: 0:00:00
Progress:  97%|███████████████████████████████████████▋ |  ETA: 0:00:00
Progress: 100%|█████████████████████████████████████████| Time: 0:00:00
BayesianAbstractExtremeValueModel
model :
	ThresholdExceedance
	data :		Vector{Float64}[152]
	logscale :	ϕ ~ 1 + Year
	shape :		ξ ~ 1

sim :
	MambaLite.Chains
	Iterations :		2001:5000
	Thinning interval :	1
	Chains :		1
	Samples per chain :	3000
	Value :			Array{Float64, 3}[3000,3,1]
Prior

Currently, only the improper uniform prior is implemented, i.e. \[ f_{(β₂,β₃)}(β₂,β₃) ∝ 1. \]

The model fit can be assessed with the diagnostic plots using the function diagnosticplots:

set_default_plot_size(21cm ,16cm)
diagnosticplots(fm)
h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? Data 0 2 4 6 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90 5.95 6.00 6.05 6.10 6.15 6.20 6.25 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 6.75 6.80 6.85 6.90 6.95 0 10 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 Density Residual Density Plot Model 0 1 2 3 4 5 6 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 5.40 5.42 5.44 5.46 5.48 5.50 5.52 5.54 5.56 5.58 5.60 5.62 5.64 5.66 5.68 5.70 5.72 5.74 5.76 5.78 5.80 5.82 5.84 5.86 5.88 5.90 5.92 5.94 5.96 5.98 6.00 0 10 5.0304379213924394.849126303774827 4.3372907408324934.546486309775839 3.93182563272432354.435266269751766 3.6441435602725444.321487713242843 3.42100000895833523.777886816657564 3.2386784521643813.519920055137825 3.0845277723371233.066653639670291 2.95099637971259862.974939430466788 2.83321334405621572.754476772506538 2.727852828398392.6504700902985157 2.63254264859406552.5787415371050924 2.54553127160443452.558023260288764 2.46548856393089852.5516529634902203 2.3913805917771772.4342263079638076 2.32238772029022572.2385502412736846 2.25784919915265462.210488361280645 2.1972245773362192.175133327545241 2.14006616349627082.1544677883983723 2.0859989422259952.099873146749779 2.03470564783844442.071110590478447 1.98591548366901272.046510171426264 1.93939546803411921.9378980359859315 1.89494370546328561.9198079633268763 1.85238409104448981.9020617234919825 1.8115620965242351.8948265958223676 1.77234138337095361.8596423436573657 1.73460105538810621.8572570364228518 1.69823341121723151.8361226115744023 1.66314209140596141.7656634366223336 1.62924053973028031.7172506407297523 1.59645071690728951.640709739221364 1.56470201859270871.6359874227092421 1.53393035992595531.5686930939312203 1.50407739677627421.5625832608940509 1.4750898599030221.552894614678811 1.44691898293632511.5403973311292931 1.4195200087482111.4062047404852398 1.39285176166604961.3882331349132497 1.36687627526278921.3569640889352983 1.34155846727849931.3498591874374009 1.31686585468812761.333312852096593 1.2927683031090671.2793470061020817 1.26923780569887311.267967047839499 1.24624828747417451.2481848700132037 1.22377543162211591.1680853169366543 1.20179652490334021.150851879078955 1.18029031968237691.1055776882799617 1.15923691048454461.0688352314679017 1.1386176232818091.0469183907994453 1.11841491596428951.0397481958307242 1.09861228866810961.0366308573852872 1.0791942028110081.0052987276911627 1.06014600784031380.9991353722286697 1.04145387482816120.9939344909314978 1.02310473615996430.9460666648518251 1.0050862306572860.927142489052747 0.98738665355788520.9248598701591062 0.96999491084601620.9059038837516363 0.95290047748671610.8947166358524095 0.93609335917033460.8888354133653826 0.91956405721912420.8708627723703919 0.9033035363473440.8653928925504142 0.88730319500090280.8636347129666797 0.87155483803276370.8292741542404523 0.85605065149679830.8283672965445246 0.84078317936600990.7862202935961343 0.82574530200146950.7815598820478262 0.81093021621632880.7705032647461231 0.79633141679517620.764276097033896 0.78194267934307640.7543139214317361 0.767758044351120.74579262540607 0.75377180237638020.7401693336723983 0.73997848024404440.7097787326966105 0.72637282818826590.6875547621162065 0.71294980785612490.6820242456827418 0.69970458110610430.6750104247512824 0.68663249953875160.6691428284405003 0.67372909470284370.6399632586373165 0.6609900689254140.6318472357400738 0.64841128671855390.6274971201755893 0.63598876671999670.6235012505392968 0.62371867412818240.6167970589628301 0.61159731359583750.6155809126619678 0.59962112254912180.5973710472123195 0.5877866649021190.561618085385884 0.57609062513892770.5571637928754466 0.56452980273785180.5459936216848235 0.5531011069142290.5350414355483559 0.54180155166029560.5265813837769683 0.53062825106217040.5252764403078259 0.51957841487558540.5045999874840756 0.50864934434339510.5045999874840756 0.49783842823917950.4988089981666753 0.48714313912243160.4822396831982965 0.476561029791894630.46867099561933473 0.466089729924599240.4610367766470673 0.45572694288905260.45597747438021813 0.445470442721863540.4471684420775922 0.435318071257845550.43281841639489427 0.42526773540434410.4206805806895957 0.415317404551176050.4104988618303065 0.405465108108164330.4098397221105362 0.39570893316279970.401885235490791 0.386047022251062740.39504185689882426 0.37647757123491210.39051463514006873 0.366998827280368370.38736315907781566 0.35760908693052930.3773475930873851 0.34830669426821580.37301538172157467 0.33909003916329170.35805829968323194 0.32995755560001920.35805829968323194 0.32090772008010140.351070234042606 0.31193905009734090.3380221692157422 0.30305010268009490.3330781422330382 0.294239472997939950.31078036257503777 0.28550579302918540.2843283451380727 0.27684773028607080.2843283451380727 0.26826398659467930.2805905930887117 0.25975329692677070.27690057589217987 0.251314428280906050.266933010349829 0.242946178610389470.26611122645248475 0.23464737579569440.2643531989807216 0.22641687665917890.2514654593146977 0.218253566020017970.24738322692245518 0.210156355787398580.2314765953239744 0.202124184090134330.2269023843440668 0.194156014440957480.2269023843440668 0.18625083493384420.22390207589492384 0.17840765747281830.19939783507683848 0.170625517030763340.16411485264300613 0.162903470936853030.1425584571702409 0.15524059819128390.1416046556184939 0.147635998806064620.13623021707644528 0.14008879317068170.12070366097014722 0.13259812144152410.11909022902799424 0.125163142954006020.1010730102623559 0.117783035656383440.08013759773623681 0.110456995564310540.0785295180861079 0.103184236235230760.0769534494431139 0.09596398826174370.07643509806401041 0.088795498783131170.07540876476521108 0.081678031014267180.07339694313989507 0.074610863791174720.07143839697900382 0.067593291132528180.0672193138746339 0.060624621816434840.06542449444642784 0.053704178971861060.06542449444642784 0.046831299684099020.06498327737726116 0.040005334613699160.06367728180843654 0.03322564762832040.06239736345807489 0.0264916154469763240.05991371244500346 0.0198026272961797120.028702818431558298 0.0131580845775111350.02774432795681493 0.0065574005461590750.02539900490973629 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.76 1.78 1.80 1.82 1.84 1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70 2.72 2.74 2.76 2.78 2.80 2.82 2.84 2.86 2.88 2.90 2.92 2.94 2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10 3.12 3.14 3.16 3.18 3.20 3.22 3.24 3.26 3.28 3.30 3.32 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 3.68 3.70 3.72 3.74 3.76 3.78 3.80 3.82 3.84 3.86 3.88 3.90 3.92 3.94 3.96 3.98 4.00 4.02 4.04 4.06 4.08 4.10 4.12 4.14 4.16 4.18 4.20 4.22 4.24 4.26 4.28 4.30 4.32 4.34 4.36 4.38 4.40 4.42 4.44 4.46 4.48 4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64 4.66 4.68 4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 0 5 Empirical Residual Quantile Plot Model 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 0.99216477983811310.9934640522875817 0.98939560042548590.9869281045751634 0.98814809031759610.9803921568627451 0.98671988815947250.9738562091503268 0.977129029049780.9673202614379085 0.97039819841475280.9607843137254902 0.95342324302632440.954248366013072 0.94894947398295640.9477124183006536 0.9363576896347610.9411764705882353 0.92938199158420630.934640522875817 0.92413057717677650.9281045751633987 0.92254229707269930.9215686274509803 0.92204729352994110.9150326797385621 0.9123344530479220.9084967320261438 0.89338704454368660.9019607843137255 0.8903529119541910.8954248366013072 0.88640699241576680.8888888888888888 0.88403510794675650.8823529411764706 0.87752803676577320.8758169934640523 0.87395428123195980.869281045751634 0.87081504882951820.8627450980392157 0.85599367200845470.8562091503267973 0.85336488125292060.8496732026143791 0.85073943224568560.8431372549019608 0.84965559686623560.8366013071895425 0.84427168237051950.8300653594771242 0.84389977911242760.8235294117647058 0.84056558165702720.8169934640522876 0.8289267474330290.8104575163398693 0.82044085751570380.803921568627451 0.80615758410807990.7973856209150327 0.80524003409110010.7908496732026143 0.79168274438320470.7843137254901961 0.79040606455386730.7777777777777778 0.78836551394013890.7712418300653595 0.78570406193800270.7647058823529411 0.75492836918238330.7581699346405228 0.75048422389636270.7516339869281046 0.74255883976608160.7450980392156863 0.74072323249842640.738562091503268 0.7363974630335960.7320261437908496 0.72178108359561580.7254901960784313 0.71859688025220150.7189542483660131 0.71297468743274550.7124183006535948 0.68903823514104070.7058823529411765 0.68363285200169670.6993464052287581 0.66898039914705810.6928104575163399 0.65659172428621660.6862745098039216 0.64898221623389320.6797385620915033 0.6464563054722550.673202614379085 0.64535247050146950.6666666666666666 0.63406469653364010.6601307189542484 0.63180234249770530.6535947712418301 0.62988240182309680.6470588235294118 0.61173479889901110.6405228758169934 0.60431723570802580.6339869281045751 0.60341301114694160.6274509803921569 0.59582360852702120.6209150326797386 0.59127660020909150.6143790849673203 0.58886572446003250.6078431372549019 0.58140975468964540.6013071895424836 0.5791138428975840.5947712418300654 0.57837319854699180.5882352941176471 0.56363409425850340.5816993464052288 0.56323819299271860.5751633986928104 0.54443655869594080.5686274509803921 0.54230849058820960.5620915032679739 0.53721989121797110.5555555555555556 0.53432909045764880.5490196078431373 0.52966681041664530.5424836601307189 0.52564183743963880.5359477124183006 0.52296686909046260.5294117647058824 0.50824700571708980.5228758169934641 0.49719595739640980.5163398692810458 0.4944074876445680.5098039215686274 0.49084888719383320.5032679738562091 0.487852612132934070.49673202614379086 0.47268820215885170.49019607843137253 0.46839111348590450.48366013071895425 0.46607351614107460.477124183006536 0.463935747237759540.47058823529411764 0.460329795801460330.46405228758169936 0.459673078627798940.45751633986928103 0.449743665835916240.45098039215686275 0.4297144538229630.4444444444444444 0.427168569338066630.43790849673202614 0.42073407389035330.43137254901960786 0.41435497688063630.42483660130718953 0.409379372405991870.41830065359477125 0.408608142779182450.4117647058823529 0.39625296649945240.40522875816993464 0.39625296649945240.39869281045751637 0.39274653081141690.39215686274509803 0.38260093615316670.38562091503267976 0.374166548764272850.3790849673202614 0.36937051546640410.37254901960784315 0.36617188569114310.3660130718954248 0.36056380875752530.35947712418300654 0.351321729549780970.35294117647058826 0.34340020142840190.3464052287581699 0.33668073707683930.33986928104575165 0.3362433728775350.3333333333333333 0.330942474656998550.32679738562091504 0.326348158318239660.3202614379084967 0.323291473117626850.3137254901960784 0.32115547839376980.30718954248366015 0.31432230435807570.3006535947712418 0.31134535993144620.29411764705882354 0.30096767954430290.2875816993464052 0.30096767954430290.28104575163398693 0.296065688033069150.27450980392156865 0.286820522906664270.2679738562091503 0.28328581367953050.26143790849673204 0.26712517506716560.2549019607843137 0.247480481988051840.24836601307189543 0.247480481988051840.24183006535947713 0.244662487415724830.23529411764705882 0.24187013025057080.22875816993464052 0.23427563464536260.2222222222222222 0.233646116063420780.21568627450980393 0.23229765991819570.20915032679738563 0.222339681933806040.20261437908496732 0.219158603259653060.19607843137254902 0.20663873635082040.1895424836601307 0.203001421967990870.1830065359477124 0.203001421967990870.17647058823529413 0.200606589578934320.16993464052287582 0.180776087514254250.16339869281045752 0.151355452786517850.1568627450980392 0.132863137556571640.1503267973856209 0.132035666512745040.1437908496732026 0.12735828766181680.13725490196078433 0.113703435054936140.13071895424836602 0.112272301659122250.12418300653594772 0.096132961092870910.11764705882352941 0.077010663594566870.1111111111111111 0.075525229197095450.10457516339869281 0.074067044702007960.09803921568627451 0.073586961662568480.0915032679738562 0.072635665022676450.08496732026143791 0.070768095420470160.0784313725490196 0.068946368455332020.0718954248366013 0.065009877457233180.06535947712418301 0.063330232140987120.058823529411764705 0.063330232140987120.05228758169934641 0.06291686626590130.0457516339869281 0.061692240341671670.0392156862745098 0.060490514130137870.032679738562091505 0.058154200350691240.026143790849673203 0.0282948055643873520.0196078431372549 0.027362988893899370.013071895424836602 0.025079163788338650.006535947712418301 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0.0 0.5 1.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190 0.195 0.200 0.205 0.210 0.215 0.220 0.225 0.230 0.235 0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390 0.395 0.400 0.405 0.410 0.415 0.420 0.425 0.430 0.435 0.440 0.445 0.450 0.455 0.460 0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 0.555 0.560 0.565 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.605 0.610 0.615 0.620 0.625 0.630 0.635 0.640 0.645 0.650 0.655 0.660 0.665 0.670 0.675 0.680 0.685 0.690 0.695 0.700 0.705 0.710 0.715 0.720 0.725 0.730 0.735 0.740 0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785 0.790 0.795 0.800 0.805 0.810 0.815 0.820 0.825 0.830 0.835 0.840 0.845 0.850 0.855 0.860 0.865 0.870 0.875 0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920 0.925 0.930 0.935 0.940 0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0 1 Empirical Residual Probability Plot

The empirical covariance matrix of the parameters and the credible intervals can be obtained with the functions parametervar and cint, respectively:

julia> parametervar(fm)3×3 Matrix{Float64}:
 210.232     -0.108249     -0.20519
  -0.108249   5.57417e-5    0.000101175
  -0.20519    0.000101175   0.0115637
julia> cint(fm, .95)3-element Vector{Vector{Float64}}:
 [-39.25043820184902, 16.596351149913975]
 [-0.007719583007889886, 0.02100563222999514]
 [0.035250436765367404, 0.44066637811066683]

Return level estimation

The 100-year effective return level estimates can be obtained using the function returnlevel:

julia> nobs = size(data,1)17531
julia> nobsperblock = 365365
julia> r = returnlevel(fm, threshold, nobs, nobsperblock, 100)ReturnLevel returnperiod : 100 value : Matrix{Float64}[456000]

The corresponding 95% credible interval can be computed using the function cint:

julia> c = cint(r, 0.95)152-element Vector{Vector{Real}}:
 [63.90230140290233, 168.0372574616761]
 [63.90230140290233, 168.0372574616761]
 [63.90230140290233, 168.0372574616761]
 [63.90230140290233, 168.0372574616761]
 [64.11418140628982, 168.3911173704221]
 [64.11418140628982, 168.3911173704221]
 [64.11418140628982, 168.3911173704221]
 [64.48520658159299, 168.09173468161583]
 [64.48520658159299, 168.09173468161583]
 [64.48520658159299, 168.09173468161583]
 ⋮
 [74.00108362294426, 222.6767296225598]
 [74.00108362294426, 222.6767296225598]
 [74.00108362294426, 222.6767296225598]
 [74.00108362294426, 222.6767296225598]
 [74.00108362294426, 222.6767296225598]
 [73.08731068757521, 224.4069539397245]
 [73.08731068757521, 224.4069539397245]
 [71.70757332656396, 225.85208724974973]
 [71.70757332656396, 225.85208724974973]

The 100-year effective return levels along with their 95% credible intervals can be illustrated as follows:

df_plot = DataFrame(Year=df.Year, ReturnLevel = vec(mean(r.value, dims=1)),
    LowerBound = first.(c), UpperBound=last.(c))

set_default_plot_size(12cm, 8cm)
plot(df_plot, x=:Year, y=:ReturnLevel, Geom.line,
    ymin=:LowerBound, ymax=:UpperBound, Geom.ribbon,
    Guide.ylabel("100-year effective return level"))
Year 1910 1920 1930 1940 1950 1960 1970 1910.0 1912.5 1915.0 1917.5 1920.0 1922.5 1925.0 1927.5 1930.0 1932.5 1935.0 1937.5 1940.0 1942.5 1945.0 1947.5 1950.0 1952.5 1955.0 1957.5 1960.0 1962.5 1965.0 1967.5 1970.0 1910.0 1910.2 1910.4 1910.6 1910.8 1911.0 1911.2 1911.4 1911.6 1911.8 1912.0 1912.2 1912.4 1912.6 1912.8 1913.0 1913.2 1913.4 1913.6 1913.8 1914.0 1914.2 1914.4 1914.6 1914.8 1915.0 1915.2 1915.4 1915.6 1915.8 1916.0 1916.2 1916.4 1916.6 1916.8 1917.0 1917.2 1917.4 1917.6 1917.8 1918.0 1918.2 1918.4 1918.6 1918.8 1919.0 1919.2 1919.4 1919.6 1919.8 1920.0 1920.2 1920.4 1920.6 1920.8 1921.0 1921.2 1921.4 1921.6 1921.8 1922.0 1922.2 1922.4 1922.6 1922.8 1923.0 1923.2 1923.4 1923.6 1923.8 1924.0 1924.2 1924.4 1924.6 1924.8 1925.0 1925.2 1925.4 1925.6 1925.8 1926.0 1926.2 1926.4 1926.6 1926.8 1927.0 1927.2 1927.4 1927.6 1927.8 1928.0 1928.2 1928.4 1928.6 1928.8 1929.0 1929.2 1929.4 1929.6 1929.8 1930.0 1930.2 1930.4 1930.6 1930.8 1931.0 1931.2 1931.4 1931.6 1931.8 1932.0 1932.2 1932.4 1932.6 1932.8 1933.0 1933.2 1933.4 1933.6 1933.8 1934.0 1934.2 1934.4 1934.6 1934.8 1935.0 1935.2 1935.4 1935.6 1935.8 1936.0 1936.2 1936.4 1936.6 1936.8 1937.0 1937.2 1937.4 1937.6 1937.8 1938.0 1938.2 1938.4 1938.6 1938.8 1939.0 1939.2 1939.4 1939.6 1939.8 1940.0 1940.2 1940.4 1940.6 1940.8 1941.0 1941.2 1941.4 1941.6 1941.8 1942.0 1942.2 1942.4 1942.6 1942.8 1943.0 1943.2 1943.4 1943.6 1943.8 1944.0 1944.2 1944.4 1944.6 1944.8 1945.0 1945.2 1945.4 1945.6 1945.8 1946.0 1946.2 1946.4 1946.6 1946.8 1947.0 1947.2 1947.4 1947.6 1947.8 1948.0 1948.2 1948.4 1948.6 1948.8 1949.0 1949.2 1949.4 1949.6 1949.8 1950.0 1950.2 1950.4 1950.6 1950.8 1951.0 1951.2 1951.4 1951.6 1951.8 1952.0 1952.2 1952.4 1952.6 1952.8 1953.0 1953.2 1953.4 1953.6 1953.8 1954.0 1954.2 1954.4 1954.6 1954.8 1955.0 1955.2 1955.4 1955.6 1955.8 1956.0 1956.2 1956.4 1956.6 1956.8 1957.0 1957.2 1957.4 1957.6 1957.8 1958.0 1958.2 1958.4 1958.6 1958.8 1959.0 1959.2 1959.4 1959.6 1959.8 1960.0 1960.2 1960.4 1960.6 1960.8 1961.0 1961.2 1961.4 1961.6 1961.8 1962.0 1962.2 1962.4 1962.6 1962.8 1963.0 1963.2 1963.4 1963.6 1963.8 1964.0 1964.2 1964.4 1964.6 1964.8 1965.0 1965.2 1965.4 1965.6 1965.8 1966.0 1966.2 1966.4 1966.6 1966.8 1967.0 1967.2 1967.4 1967.6 1967.8 1968.0 1968.2 1968.4 1968.6 1968.8 1969.0 1969.2 1969.4 1969.6 1969.8 1970.0 1900 2000 h,j,k,l,arrows,drag to pan i,o,+,-,scroll,shift-drag to zoom r,dbl-click to reset c for coordinates ? for help ? 0 50 100 150 200 250 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 0 250 100-year effective return level
  • 1Katz, R. W., M. B. Parlange, and P. Naveau (2002), Statistics of extremes in hydrology, Adv. Water Resour., 25, 1287–1304.