The stationary BlockMaxima
model is illustrated using the annual maximum sea-levels recorded at Port Pirie in South Australia from 1923 to 1987, studied by Coles (2001) in Chapter 3. The annual maxima are assumed independent and identically distributed .
The Extremes.jl package supports maximum likelihood inference, Bayesian inference and inference based on the probability weigthed moments. For the GEV parameter estimation, the following functions can be used:
gevfitpwm
: estimation with the probability weighted moments;gevfit
: maximum likelihood estimation;gevfitbayes
: Bayesian estimation.These functions shows the estimate of the log-scale parameter $\phi = \log \sigma$ instead of the scale parameter.
Loading the annual maximum sea-levels at Port Pirie:
data = Extremes.dataset("portpirie")
first(data,5)
1 1923 4.03 2 1924 3.83 3 1925 3.65 4 1926 3.88 5 1927 4.01
The annual maxima can be shown as a function of the year using the Gadfly package:
set_default_plot_size(12cm, 8cm)
plot(data, x=:Year, y=:SeaLevel, Geom.line)
Year
1920
1940
1960
1980
2000
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
1920.0
1920.5
1921.0
1921.5
1922.0
1922.5
1923.0
1923.5
1924.0
1924.5
1925.0
1925.5
1926.0
1926.5
1927.0
1927.5
1928.0
1928.5
1929.0
1929.5
1930.0
1930.5
1931.0
1931.5
1932.0
1932.5
1933.0
1933.5
1934.0
1934.5
1935.0
1935.5
1936.0
1936.5
1937.0
1937.5
1938.0
1938.5
1939.0
1939.5
1940.0
1940.5
1941.0
1941.5
1942.0
1942.5
1943.0
1943.5
1944.0
1944.5
1945.0
1945.5
1946.0
1946.5
1947.0
1947.5
1948.0
1948.5
1949.0
1949.5
1950.0
1950.5
1951.0
1951.5
1952.0
1952.5
1953.0
1953.5
1954.0
1954.5
1955.0
1955.5
1956.0
1956.5
1957.0
1957.5
1958.0
1958.5
1959.0
1959.5
1960.0
1960.5
1961.0
1961.5
1962.0
1962.5
1963.0
1963.5
1964.0
1964.5
1965.0
1965.5
1966.0
1966.5
1967.0
1967.5
1968.0
1968.5
1969.0
1969.5
1970.0
1970.5
1971.0
1971.5
1972.0
1972.5
1973.0
1973.5
1974.0
1974.5
1975.0
1975.5
1976.0
1976.5
1977.0
1977.5
1978.0
1978.5
1979.0
1979.5
1980.0
1980.5
1981.0
1981.5
1982.0
1982.5
1983.0
1983.5
1984.0
1984.5
1985.0
1985.5
1986.0
1986.5
1987.0
1987.5
1988.0
1988.5
1989.0
1989.5
1990.0
1990.5
1991.0
1991.5
1992.0
1992.5
1993.0
1993.5
1994.0
1994.5
1995.0
1995.5
1996.0
1996.5
1997.0
1997.5
1998.0
1998.5
1999.0
1999.5
2000.0
1900
2000
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
SeaLevel
The GEV parameter estimation with maximum likelihood is performed with the gevfit
function:
julia> fm = gevfit(data, :SeaLevel)
MaximumLikelihoodAbstractExtremeValueModel
model :
BlockMaxima{GeneralizedExtremeValue}
data : Vector{Float64}[65]
location : μ ~ 1
logscale : ϕ ~ 1
shape : ξ ~ 1
θ̂ : [3.874750223091266, -1.6192723640210762, -0.05010719929448139]
In this example, the gevfit
function is called using the data DataFrame structure as the first argument. The function can also be called using the vector of maxima as the first argument, e.g. gevfit(data[:,:SeaLevel])
.
The vector of the parameter estimates (location scale and shape) can be extracted with the function params
:
julia> params(fm)
1-element Vector{Tuple{Float64, Float64, Float64}}:
(3.874750223091266, 0.19804274969909974, -0.05010719929448139)
The location parameter with the function location
:
julia> location(fm)
1-element Vector{Float64}:
3.874750223091266
The scale parameter with the function Extremes.scale
:
julia> scale(fm)
1-element Vector{Float64}:
0.19804274969909974
The shape parameter with the function shape
:
julia> shape(fm)
1-element Vector{Float64}:
-0.05010719929448139
These functions return a unit dimension vector for the return level and a vector containing only one vector for the confidence interval. The reason is that the functions always return the same type in the stationary and non-stationary case. The functions are therefore type-stable allowing better performance of code execution.
The approximate covariance matrix of the parameter estimates can be obtained with the parametervar
function:
julia> parametervar(fm)
3×3 Matrix{Float64}:
0.000780204 0.000995016 -0.0010741
0.000995016 0.0104541 -0.00392576
-0.0010741 -0.00392576 0.00965404
Confidence intervals for the parameters are obtained with the cint
function:
julia> cint(fm)
3-element Vector{Vector{Float64}}:
[3.820004234825991, 3.929496211356541]
[-1.819669858589598, -1.4188748694525544]
[-0.24268345866324303, 0.14246906007428023]
For instance, the shape parameter 95% confidence interval is as follows:
julia> cint(fm)[3]
2-element Vector{Float64}:
-0.24268345866324303
0.14246906007428023
Several diagnostic plots for assessing the accuracy of the GEV model fitted to the Port Pirie data are can be shown with the diagnosticplots
function:
set_default_plot_size(21cm ,16cm)
diagnosticplots(fm)
Return Period
100.0
100.5
101.0
101.5
102.0
100.0
100.1
100.2
100.3
100.4
100.5
100.6
100.7
100.8
100.9
101.0
101.1
101.2
101.3
101.4
101.5
101.6
101.7
101.8
101.9
102.0
100.00
100.01
100.02
100.03
100.04
100.05
100.06
100.07
100.08
100.09
100.10
100.11
100.12
100.13
100.14
100.15
100.16
100.17
100.18
100.19
100.20
100.21
100.22
100.23
100.24
100.25
100.26
100.27
100.28
100.29
100.30
100.31
100.32
100.33
100.34
100.35
100.36
100.37
100.38
100.39
100.40
100.41
100.42
100.43
100.44
100.45
100.46
100.47
100.48
100.49
100.50
100.51
100.52
100.53
100.54
100.55
100.56
100.57
100.58
100.59
100.60
100.61
100.62
100.63
100.64
100.65
100.66
100.67
100.68
100.69
100.70
100.71
100.72
100.73
100.74
100.75
100.76
100.77
100.78
100.79
100.80
100.81
100.82
100.83
100.84
100.85
100.86
100.87
100.88
100.89
100.90
100.91
100.92
100.93
100.94
100.95
100.96
100.97
100.98
100.99
101.00
101.01
101.02
101.03
101.04
101.05
101.06
101.07
101.08
101.09
101.10
101.11
101.12
101.13
101.14
101.15
101.16
101.17
101.18
101.19
101.20
101.21
101.22
101.23
101.24
101.25
101.26
101.27
101.28
101.29
101.30
101.31
101.32
101.33
101.34
101.35
101.36
101.37
101.38
101.39
101.40
101.41
101.42
101.43
101.44
101.45
101.46
101.47
101.48
101.49
101.50
101.51
101.52
101.53
101.54
101.55
101.56
101.57
101.58
101.59
101.60
101.61
101.62
101.63
101.64
101.65
101.66
101.67
101.68
101.69
101.70
101.71
101.72
101.73
101.74
101.75
101.76
101.77
101.78
101.79
101.80
101.81
101.82
101.83
101.84
101.85
101.86
101.87
101.88
101.89
101.90
101.91
101.92
101.93
101.94
101.95
101.96
101.97
101.98
101.99
102.00
100
102
1.8195439355418694.69
1.51851393987788774.55
1.34242268082220664.55
1.21748394421390674.37
1.12057393120584964.36
1.0413926851582254.33
0.97444589552761174.33
0.91645394854992514.25
0.86530142610254384.24
0.81954393554186884.24
0.77815125038364374.22
0.7403626894942444.21
0.70560058323503184.21
0.67341589986363064.18
0.64345267648618744.18
0.61542395288594394.11
0.58909501416359484.11
0.56427143043856264.11
0.54079033458903984.08
0.51851393987788754.08
0.497324640807949364.06
0.47712125471966244.06
0.457816099524275774.05
0.439332693830262634.03
0.421603926869831064.01
0.404570587571050744.01
0.38818017138288144.0
0.372385904199649453.98
0.35714593764291253.97
0.342422680822206173.96
0.328182241707595973.96
0.314393957221962673.96
0.30102999566398123.96
0.28806501849961353.94
0.27547589119159313.93
0.263241434774581453.91
0.251342211474873733.9
0.23976033892505863.9
0.22847932851536953.89
0.217483944213906273.88
0.20676007882213323.88
0.19629464514396823.88
0.186075479962282163.86
0.176091259055681183.86
0.166331421766524963.85
0.156786103860294573.85
0.147446077606151223.85
0.138302698166281463.85
0.129347855513354983.83
0.120573931205849893.8
0.111973759443932333.79
0.103540591907069563.78
0.095268065941079693.75
0.08715017571890023.75
0.079181246047624823.74
0.071355908535668273.73
0.06366907986937733.72
0.056115941978931413.71
0.0486919238997245363.71
0.041392685158225083.66
0.0342141005311016743.66
0.0271522460436147763.65
0.020203386088286993.63
0.0133639615579815023.62
0.0066305788990130763.57
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
Return Level
Return Level Plot
Data
3.0
3.5
4.0
4.5
5.0
5.5
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
3.470
3.475
3.480
3.485
3.490
3.495
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
5.005
5.010
5.015
5.020
5.025
5.030
5.035
3
6
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
1.5
2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2.00
0
2
Density
Density Plot
Model
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
4.6219509798308444.69
4.5073896587311764.55
4.4379252372205574.55
4.3873501120583414.37
4.3472730930804924.36
4.313903268268714.33
4.2851964610403764.33
4.25992160207960254.25
4.2372785494932264.24
4.2167172562601814.24
4.1978429548925214.22
4.18036246023178754.21
4.1640518720023744.21
4.14873618478422754.18
4.1342758917585314.18
4.1205578840608224.11
4.107489089680754.11
4.0949919165478614.11
4.0830009172231174.08
4.0714603009881474.08
4.06032204638748254.06
4.0495444473207744.06
4.0390909774483094.05
4.0289293918036584.03
4.0190310075252554.01
4.0093701214333984.01
3.9999235332277164.0
3.99067015091516363.98
3.98159066070875723.97
3.9726672477294713.96
3.9638833568460993.96
3.95522348520539073.96
3.9466729996474673.96
3.9382179734150353.94
3.9298450374502633.93
3.9215412421998623.91
3.91329392626300183.9
3.9050905884463323.9
3.89691875984847653.89
3.88876587248179863.88
3.8806191206362553.88
3.8724653106656273.88
3.8642906940751653.86
3.85608077762571273.86
3.84782010251257533.85
3.83949198233107853.85
3.8310781862064933.85
3.82255854868440853.85
3.813910481030283.83
3.8051083483269283.8
3.7961226613133913.79
3.7869190081377673.78
3.7774566136810483.75
3.76768635317758933.75
3.7575479445941513.74
3.74696586597646063.73
3.73584321926299933.72
3.7240521389848173.71
3.71141807165880173.71
3.6976924459992053.66
3.68250144422118543.66
3.66523984685777743.65
3.64481765205137183.63
3.61890765144723763.62
3.58059910841052183.57
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
Empirical
Quantile Plot
Model
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
0.99010053058224780.9848484848484849
0.97650210763630050.9696969696969697
0.97650210763630050.9545454545454546
0.93321091988811060.9393939393939394
0.92939101449036890.9242424242424242
0.91671062941716220.9090909090909091
0.91671062941716220.8939393939393939
0.87233980831400430.8787878787878788
0.86554033047676530.8636363636363636
0.86554033047676530.8484848484848485
0.85099657827387360.8333333333333334
0.8432325017727410.8181818181818182
0.8432325017727410.803030303030303
0.81785590009886520.7878787878787878
0.81785590009886520.7727272727272727
0.7453900741842490.7575757575757576
0.7453900741842490.7424242424242424
0.7453900741842490.7272727272727273
0.70823505183899630.7121212121212122
0.70823505183899630.696969696969697
0.68137240938767050.6818181818181818
0.68137240938767050.6666666666666666
0.66731679869928480.6515151515151515
0.63797938096828930.6363636363636364
0.60705919188059170.6212121212121212
0.60705919188059170.6060606060606061
0.59103303823344880.5909090909090909
0.55792367347072520.5757575757575758
0.5408778674161110.5606060606060606
0.52353387599501370.5454545454545454
0.52353387599501370.5303030303030303
0.52353387599501370.5151515151515151
0.52353387599501370.5
0.488054965276711440.48484848484848486
0.469978599967746440.4696969696969697
0.43331854235728040.45454545454545453
0.41480927452708190.4393939393939394
0.41480927452708190.42424242424242425
0.396234251648682640.4090909090909091
0.37763664582146870.3939393939393939
0.37763664582146870.3787878787878788
0.37763664582146870.36363636363636365
0.3405564272709580.3484848484848485
0.3405564272709580.3333333333333333
0.322169429631464830.3181818181818182
0.322169429631464830.30303030303030304
0.322169429631464830.2878787878787879
0.322169429631464830.2727272727272727
0.285950069557234070.25757575757575757
0.233769221393338920.24242424242424243
0.217149621406222880.22727272727272727
0.200997664605057970.21212121212121213
0.155787780522999080.19696969696969696
0.155787780522999080.18181818181818182
0.141930610745581470.16666666666666666
0.128735419058502910.15151515151515152
0.11622864329282370.13636363636363635
0.104431525702927620.12121212121212122
0.104431525702927620.10606060606060606
0.0564361556412569940.09090909090909091
0.0564361556412569940.07575757575757576
0.04902158135621790.06060606060606061
0.036257878806067290.045454545454545456
0.030855545359097220.030303030303030304
0.0122361316781267810.015151515151515152
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Empirical
Probability Plot
The diagnostic plots consist in the probability plot (upper left panel), the quantile plot (upper right panel), the density plot (lower left panel) and the return level plot (lower right panel). These plots can be displayed separately using respectively the probplot
, qqplot
, histplot
and returnlevelplot
functions.
T -year return level estimate can be obtained using the returnlevel
function. For example, the 100-year return level for the Port Pirie block maxima model is computed as follows:
julia> r = returnlevel(fm, 100)
ReturnLevel
returnperiod : 100
value : Vector{Float64}[1]
The return level can be accessed as follows:
julia> r.value
1-element Vector{Float64}:
4.688403360432851
The corresponding confidence interval can be computed with the cint
function:
julia> c = cint(r)
1-element Vector{Vector{Real}}:
[4.377121171613512, 4.99968554925219]
To get the scalar return level in the stationary case, the following command can be used:
julia> r.value[]
4.688403360432851
To get the scalar confidence interval in the stationary case, the following command can be used:
julia> c[]
2-element Vector{Real}:
4.377121171613512
4.99968554925219
Most functions described in the previous sections also work in the Bayesian context. To reproduce exactly the results, the seed should be fixed as follows:
import Random
Random.seed!(4786)
The Bayesian GEV parameter estimation is performed with the gevfitbayes
function:
julia> fm = gevfitbayes(data, :SeaLevel)
Progress: 0%| | ETA: 0:06:38
Progress: 100%|█████████████████████████████████████████| Time: 0:00:02
BayesianAbstractExtremeValueModel
model :
BlockMaxima{GeneralizedExtremeValue}
data : Vector{Float64}[65]
location : μ ~ 1
logscale : ϕ ~ 1
shape : ξ ~ 1
sim :
MambaLite.Chains
Iterations : 2001:5000
Thinning interval : 1
Chains : 1
Samples per chain : 3000
Value : Array{Float64, 3}[3000,3,1]
Currently, only the improper uniform prior is implemented, i.e. \[ f_{(μ,ϕ,ξ)}(μ,ϕ,ξ) ∝ 1. \] It yields to a proper posterior as long as the sample size is larger than 3 (Northrop and Attalides, 2016 ).
The generated sample from the posterior distribution is contained in the field sim
of the fitted structure. It is an object of type Chains from the Mamba.jl package.
Credible intervals for the parameters are obtained with the cint
function:
julia> cint(fm)
3-element Vector{Vector{Float64}}:
[3.8182738930811233, 3.931583774977113]
[-1.7897113975890682, -1.4005833922456459]
[-0.2018902582086667, 0.1553392907141933]
Most functions described in the previous sections also work for the model fitted with the probability weighted moments.
The parameter estimation based on the probability weighted moments is performed with the gevfitpwm
function:
julia> fm = gevfitpwm(data, :SeaLevel)
pwmAbstractExtremeValueModel
model :
BlockMaxima{GeneralizedExtremeValue}
data : Vector{Float64}[65]
location : μ ~ 1
logscale : ϕ ~ 1
shape : ξ ~ 1
θ̂ : [3.8731723562720766, -1.5932320395836068, -0.051477125862911276]
The approximate covariance matrix of the parameter estimates using a bootstrap procedure can be obtained with the parametervar
function:
julia> parametervar(fm)
3×3 Matrix{Float64}:
0.000871239 0.00116247 -0.00111277
0.00116247 0.0106812 -0.00361624
-0.00111277 -0.00361624 0.0072629
Confidence intervals on the parameter estimates using a bootstrap procedure can be obtained with the cint
function:
julia> cint(fm)
3-element Vector{Vector{Float64}}:
[3.822276679146202, 3.9317746782451266]
[-1.8146460804733326, -1.4222820715987998]
[-0.224777189866786, 0.08648421062397504]
The inference for the Gumbel distribution is also provided for modeling the series of block maxima. The Gumbel distribution is a sub-family of the GEV distribution when the shape parameter $\xi = 0$ . The library provides functions analogous to those for the GEV distribution for the adjustment of the parameters of the Gumbel distribution:
The inference for the fitted model is performed with the same methods defined previously for the GEV distribution, notably with the cint
and returnlevel
methods. Diagnostic plot methods diagnosticplots
are also implemented, such as probplot
, qqplot
, histplot
and returnlevelplot
.
As extreme-value statisticians, we advocate avoiding the use of the Gumbel distribution for modelling the block maxima. This is because the choice of family is made with the data at hand, and when extrapolating to large quantiles, i.e. larger than the range of the data, the uncertainty associated with this choice is not taken into account. If the data suggest that the Gumbel family is the best one, this does not imply that the other families are not plausible. In applications, the confidence intervals on the shape parameter are often wide, representing the difficulty of discriminating the tail behavior using only the limited number of data. Therefore, we plead for the use of the GEV distribution for the block maxima model without choosing a subfamily such as the Gumbel. As Coles (2001) also argued in Page 64, this is "... the safest option is to accept there is uncertainty about the value of the shape parameter ... and to prefer the inference based on the GEV model. The larger measures of uncertainty generated by the GEV model then provide a more realistic quantification of the genuine uncertainties involved in model extrapolation".
The Gumbel distribution parameter estimation with maximum likelihood can be performed with the gumbelfit
function:
julia> fm = gumbelfit(data, :SeaLevel)
MaximumLikelihoodAbstractExtremeValueModel
model :
BlockMaxima{Gumbel}
data : Vector{Float64}[65]
location : μ ~ 1
logscale : ϕ ~ 1
θ̂ : [3.8694436499474767, -1.6353194298573894]
The approximate covariance matrix of the parameter estimates can be obtained with the parametervar
function:
julia> parametervar(fm)
2×2 Matrix{Float64}:
0.000649941 0.000783584
0.000783584 0.00935991
Confidence intervals for the parameters are obtained with the cint
function:
julia> cint(fm)
2-element Vector{Vector{Float64}}:
[3.819476453475028, 3.9194108464199253]
[-1.824939298384268, -1.4456995613305108]
The diagnostic plots for assessing the accuracy of the Gumbel model can be shown with the diagnosticplots
function:
set_default_plot_size(21cm ,16cm)
diagnosticplots(fm)
Return Period
100.0
100.5
101.0
101.5
102.0
100.0
100.1
100.2
100.3
100.4
100.5
100.6
100.7
100.8
100.9
101.0
101.1
101.2
101.3
101.4
101.5
101.6
101.7
101.8
101.9
102.0
100.00
100.01
100.02
100.03
100.04
100.05
100.06
100.07
100.08
100.09
100.10
100.11
100.12
100.13
100.14
100.15
100.16
100.17
100.18
100.19
100.20
100.21
100.22
100.23
100.24
100.25
100.26
100.27
100.28
100.29
100.30
100.31
100.32
100.33
100.34
100.35
100.36
100.37
100.38
100.39
100.40
100.41
100.42
100.43
100.44
100.45
100.46
100.47
100.48
100.49
100.50
100.51
100.52
100.53
100.54
100.55
100.56
100.57
100.58
100.59
100.60
100.61
100.62
100.63
100.64
100.65
100.66
100.67
100.68
100.69
100.70
100.71
100.72
100.73
100.74
100.75
100.76
100.77
100.78
100.79
100.80
100.81
100.82
100.83
100.84
100.85
100.86
100.87
100.88
100.89
100.90
100.91
100.92
100.93
100.94
100.95
100.96
100.97
100.98
100.99
101.00
101.01
101.02
101.03
101.04
101.05
101.06
101.07
101.08
101.09
101.10
101.11
101.12
101.13
101.14
101.15
101.16
101.17
101.18
101.19
101.20
101.21
101.22
101.23
101.24
101.25
101.26
101.27
101.28
101.29
101.30
101.31
101.32
101.33
101.34
101.35
101.36
101.37
101.38
101.39
101.40
101.41
101.42
101.43
101.44
101.45
101.46
101.47
101.48
101.49
101.50
101.51
101.52
101.53
101.54
101.55
101.56
101.57
101.58
101.59
101.60
101.61
101.62
101.63
101.64
101.65
101.66
101.67
101.68
101.69
101.70
101.71
101.72
101.73
101.74
101.75
101.76
101.77
101.78
101.79
101.80
101.81
101.82
101.83
101.84
101.85
101.86
101.87
101.88
101.89
101.90
101.91
101.92
101.93
101.94
101.95
101.96
101.97
101.98
101.99
102.00
100
102
1.8195439355418694.69
1.51851393987788774.55
1.34242268082220664.55
1.21748394421390674.37
1.12057393120584964.36
1.0413926851582254.33
0.97444589552761174.33
0.91645394854992514.25
0.86530142610254384.24
0.81954393554186884.24
0.77815125038364374.22
0.7403626894942444.21
0.70560058323503184.21
0.67341589986363064.18
0.64345267648618744.18
0.61542395288594394.11
0.58909501416359484.11
0.56427143043856264.11
0.54079033458903984.08
0.51851393987788754.08
0.497324640807949364.06
0.47712125471966244.06
0.457816099524275774.05
0.439332693830262634.03
0.421603926869831064.01
0.404570587571050744.01
0.38818017138288144.0
0.372385904199649453.98
0.35714593764291253.97
0.342422680822206173.96
0.328182241707595973.96
0.314393957221962673.96
0.30102999566398123.96
0.28806501849961353.94
0.27547589119159313.93
0.263241434774581453.91
0.251342211474873733.9
0.23976033892505863.9
0.22847932851536953.89
0.217483944213906273.88
0.20676007882213323.88
0.19629464514396823.88
0.186075479962282163.86
0.176091259055681183.86
0.166331421766524963.85
0.156786103860294573.85
0.147446077606151223.85
0.138302698166281463.85
0.129347855513354983.83
0.120573931205849893.8
0.111973759443932333.79
0.103540591907069563.78
0.095268065941079693.75
0.08715017571890023.75
0.079181246047624823.74
0.071355908535668273.73
0.06366907986937733.72
0.056115941978931413.71
0.0486919238997245363.71
0.041392685158225083.66
0.0342141005311016743.66
0.0271522460436147763.65
0.020203386088286993.63
0.0133639615579815023.62
0.0066305788990130763.57
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
Return Level
Return Level Plot
Data
3.0
3.5
4.0
4.5
5.0
5.5
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97
3.98
3.99
4.00
4.01
4.02
4.03
4.04
4.05
4.06
4.07
4.08
4.09
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85
4.86
4.87
4.88
4.89
4.90
4.91
4.92
4.93
4.94
4.95
4.96
4.97
4.98
4.99
5.00
5.01
5.02
5.03
5.04
5.05
5.06
5.07
5.08
5.09
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
3
6
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
1.5
2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98
1.99
2.00
0
2
Density
Density Plot
Model
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
4.6844800667667984.69
4.5478875281421974.55
4.4673416741454924.55
4.4097302968020954.37
4.3646759749010774.36
4.3275559727316214.33
4.2959040643763264.33
4.2682478405965724.25
4.2436372933105474.24
4.22142350276411454.24
4.2011433692529464.22
4.1824547117859264.21
4.1650974330983984.21
4.14886911635754.18
4.1336090601435824.18
4.1191874750407974.11
4.1054979597087654.11
4.0924521292421054.11
4.0799756961565694.08
4.068005556024124.08
4.0564875830179674.06
4.0453749367275424.06
4.0346267434659894.05
4.02420705605462554.03
4.01408402349359154.01
4.0042292207287734.01
3.99461710183340024.0
3.9852245492019613.98
3.9760304980122933.97
3.96701562004645373.96
3.9581620545068883.96
3.9494531760854893.96
3.9408733924896173.96
3.932407965074983.94
3.9240428473015043.93
3.91576453649903033.91
3.907559934961823.9
3.89941621672095853.9
3.8913206964915953.89
3.88326069726253743.88
3.8752234127790183.88
3.86719576073874153.88
3.85916422182879253.86
3.85111465870032753.86
3.843032107492033.85
3.83490053239432263.85
3.82670253072332673.85
3.8184189716293083.85
3.81002854524568063.83
3.8015071897491343.8
3.7928273497466573.79
3.7839569977783863.78
3.7748583166036373.75
3.7654858845416683.75
3.75578411321064333.74
3.7456835251169313.73
3.7350951638211713.72
3.7239018642401323.71
3.7119439571702813.71
3.69899444119197263.66
3.68471249361378963.66
3.66854725650780633.65
3.64950852687855283.63
3.6254871063274383.62
3.5902405093992523.57
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
3.5
4.0
4.5
5.0
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
3.500
3.505
3.510
3.515
3.520
3.525
3.530
3.535
3.540
3.545
3.550
3.555
3.560
3.565
3.570
3.575
3.580
3.585
3.590
3.595
3.600
3.605
3.610
3.615
3.620
3.625
3.630
3.635
3.640
3.645
3.650
3.655
3.660
3.665
3.670
3.675
3.680
3.685
3.690
3.695
3.700
3.705
3.710
3.715
3.720
3.725
3.730
3.735
3.740
3.745
3.750
3.755
3.760
3.765
3.770
3.775
3.780
3.785
3.790
3.795
3.800
3.805
3.810
3.815
3.820
3.825
3.830
3.835
3.840
3.845
3.850
3.855
3.860
3.865
3.870
3.875
3.880
3.885
3.890
3.895
3.900
3.905
3.910
3.915
3.920
3.925
3.930
3.935
3.940
3.945
3.950
3.955
3.960
3.965
3.970
3.975
3.980
3.985
3.990
3.995
4.000
4.005
4.010
4.015
4.020
4.025
4.030
4.035
4.040
4.045
4.050
4.055
4.060
4.065
4.070
4.075
4.080
4.085
4.090
4.095
4.100
4.105
4.110
4.115
4.120
4.125
4.130
4.135
4.140
4.145
4.150
4.155
4.160
4.165
4.170
4.175
4.180
4.185
4.190
4.195
4.200
4.205
4.210
4.215
4.220
4.225
4.230
4.235
4.240
4.245
4.250
4.255
4.260
4.265
4.270
4.275
4.280
4.285
4.290
4.295
4.300
4.305
4.310
4.315
4.320
4.325
4.330
4.335
4.340
4.345
4.350
4.355
4.360
4.365
4.370
4.375
4.380
4.385
4.390
4.395
4.400
4.405
4.410
4.415
4.420
4.425
4.430
4.435
4.440
4.445
4.450
4.455
4.460
4.465
4.470
4.475
4.480
4.485
4.490
4.495
4.500
4.505
4.510
4.515
4.520
4.525
4.530
4.535
4.540
4.545
4.550
4.555
4.560
4.565
4.570
4.575
4.580
4.585
4.590
4.595
4.600
4.605
4.610
4.615
4.620
4.625
4.630
4.635
4.640
4.645
4.650
4.655
4.660
4.665
4.670
4.675
4.680
4.685
4.690
4.695
4.700
4.705
4.710
4.715
4.720
4.725
4.730
4.735
4.740
4.745
4.750
4.755
4.760
4.765
4.770
4.775
4.780
4.785
4.790
4.795
4.800
4.805
4.810
4.815
4.820
4.825
4.830
4.835
4.840
4.845
4.850
4.855
4.860
4.865
4.870
4.875
4.880
4.885
4.890
4.895
4.900
4.905
4.910
4.915
4.920
4.925
4.930
4.935
4.940
4.945
4.950
4.955
4.960
4.965
4.970
4.975
4.980
4.985
4.990
4.995
5.000
3
4
5
Empirical
Quantile Plot
Model
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
0.98526847331057530.9848484848484849
0.97001871226417440.9696969696969697
0.97001871226417440.9545454545454546
0.92620668689261620.9393939393939394
0.92247600351985460.9242424242424242
0.91017134872110570.9090909090909091
0.91017134872110570.8939393939393939
0.86771279533161750.8787878787878788
0.86125446585329910.8636363636363636
0.86125446585329910.8484848484848485
0.84746347694415470.8333333333333334
0.84011076086249510.8181818181818182
0.84011076086249510.803030303030303
0.81610341301371890.7878787878787878
0.81610341301371890.7727272727272727
0.74749085646498870.7575757575757576
0.74749085646498870.7424242424242424
0.74749085646498870.7272727272727273
0.71215136092686320.7121212121212122
0.71215136092686320.696969696969697
0.68649826367421150.6818181818181818
0.68649826367421150.6666666666666666
0.6730362869995150.6515151515151515
0.64484328938211260.6363636363636364
0.61498063392336210.6212121212121212
0.61498063392336210.6060606060606061
0.59943894617568140.5909090909090909
0.56718575981365350.5757575757575758
0.55050201337006030.5606060606060606
0.53346977817979750.5454545454545454
0.53346977817979750.5303030303030303
0.53346977817979750.5151515151515151
0.53346977817979750.5
0.49844577905278050.48484848484848486
0.48050449096362580.4696969696969697
0.44391286204417190.45454545454545453
0.42533183484818760.4393939393939394
0.42533183484818760.42424242424242425
0.40661214397389090.4090909090909091
0.38779626246936550.3939393939393939
0.38779626246936550.3787878787878788
0.38779626246936550.36363636363636365
0.350060430132954350.3484848484848485
0.350060430132954350.3333333333333333
0.33123946079255810.3181818181818182
0.33123946079255810.30303030303030304
0.33123946079255810.2878787878787879
0.33123946079255810.2727272727272727
0.29395622906528220.25757575757575757
0.239771849085112620.24242424242424243
0.222404952649301130.22727272727272727
0.205480914791937420.21212121212121213
0.15790940346973850.19696969696969696
0.15790940346973850.18181818181818182
0.14328608857153320.16666666666666666
0.129353449756336470.15151515151515152
0.116148328955931880.13636363636363635
0.103701664666399140.12121212121212122
0.103701664666399140.10606060606060606
0.0534481815274281960.09090909090909091
0.0534481815274281960.07575757575757576
0.045809797348004480.06060606060606061
0.032828037357590470.045454545454545456
0.0274236301509087380.030303030303030304
0.0095790823536893360.015151515151515152
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
0.0
0.5
1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300
0.305
0.310
0.315
0.320
0.325
0.330
0.335
0.340
0.345
0.350
0.355
0.360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0.400
0.405
0.410
0.415
0.420
0.425
0.430
0.435
0.440
0.445
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500
0.505
0.510
0.515
0.520
0.525
0.530
0.535
0.540
0.545
0.550
0.555
0.560
0.565
0.570
0.575
0.580
0.585
0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675
0.680
0.685
0.690
0.695
0.700
0.705
0.710
0.715
0.720
0.725
0.730
0.735
0.740
0.745
0.750
0.755
0.760
0.765
0.770
0.775
0.780
0.785
0.790
0.795
0.800
0.805
0.810
0.815
0.820
0.825
0.830
0.835
0.840
0.845
0.850
0.855
0.860
0.865
0.870
0.875
0.880
0.885
0.890
0.895
0.900
0.905
0.910
0.915
0.920
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
0.970
0.975
0.980
0.985
0.990
0.995
1.000
0
1
Empirical
Probability Plot
The 100-year return level for the Port Pirie block maxima model is computed with the returnlevel
function as follows:
julia> r = returnlevel(fm, 100)
ReturnLevel
returnperiod : 100
value : Vector{Float64}[1]
The return level can be accessed as follows:
julia> r.value
1-element Vector{Float64}:
4.7659672278955645
The corresponding confidence interval can be computed with the cint
function:
julia> c = cint(r)
1-element Vector{Vector{Real}}:
[4.574150814798266, 4.957783640992863]